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Abstract

We propose spectral methods for long-term forecasting of temporal signals stemming from
linear and nonlinear quasi-periodic dynamical systems. For linear signals, we introduce an
algorithm with similarities to the Fourier transform but which does not rely on periodicity
assumptions, allowing for forecasting given potentially arbitrary sampling intervals. We
then extend this algorithm to handle nonlinearities by leveraging Koopman theory. The
resulting algorithm performs a spectral decomposition in a nonlinear, data-dependent basis.
The optimization objective for both algorithms is highly non-convex. However, expressing
the objective in the frequency domain allows us to compute global optima of the error sur-
face in a scalable and efficient manner, partially by exploiting the computational properties
of the Fast Fourier Transform. Because of their close relation to Bayesian Spectral Analy-
sis, uncertainty quantification metrics are a natural byproduct of the spectral forecasting
methods. We extensively benchmark these algorithms against other leading forecasting
methods on a range of synthetic experiments as well as in the context of real-world power
systems and fluid flows.

1. Introduction

Forecasting of time series data is fundamental to almost every discipline in science and engi-
neering, with applications in oceanography, epidemiology, meteorology, economics, etc (Arm-
strong, 1985). Indeed, time-series analysis has been historically a core discipline in statisti-
cal sciences where prediction accuracy and uncertainty quantification are critical for charac-
terizing the underlying complex dynamical system measured. Such future state predictions
also play a fundamental role in control theory where improved forecasting can in turn im-
prove the latency time of control laws (Box et al., 2015). While there are a host of effective
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short-time forecasting methods (Hamilton, 1994), generic mathematical architectures that
allow for stable long-term forecasts, while mitigating compounding errors, are lacking.

The fundamental problem of forecasting has generated a diverse set of approaches for
producing future state predictions and uncertainty metrics. Most of the pre-existing ap-
proaches are of the following type: a parameterized function fΘ : RT ′×N → RN is introduced
and tasked with predicting the next temporal snapshot given a collection of previous ones
by minimizing some loss function with respect to the parameters Θ. Prominent mem-
bers of this family of approaches include Box-Jenkins models (Box et al., 2015; Pankratz,
2009), for example ARIMA or SARIMAX, and several neural network approaches, includ-
ing Recurrent Neural Networks, such as Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997), Gated Recurrent Units (Chung et al., 2014) and most Echo State
Networks (Jaeger, 2007), as well as Reservoir Computing approaches (Paquot et al., 2012)
and hybrid approaches that combine wavelets and Neural Networks (Jiang and Adeli, 2005).
Since fΘ usually only allows one to obtain an estimate of the value the signal will take in the
next time step, in order to allow for long-term forecasting, estimates must be recursively fed
back into fΘ. The main drawback of approaches that recursively perform one-step-ahead
predictions, i.e. an approach that iteratively performs a succession of local decisions, is that
errors compound over time.

In this work, ideas from operator theory, signal processing, and machine learning are
combined to (i) derive generic and, under some conditions, optimal algorithms for long-term
forecasting that do not require knowledge of the dynamics and that mitigate compounding
errors, and (ii) derive practical error bounds and uncertainty metrics of the resulting algo-
rithms as functions of noise and amounts of data provided. Because the contributions in
this work touch multiple disciplines, they can be understood from different perspectives.

From the viewpoint of signal processing, we leverage Bayesian Spectral Analysis (Bret-
thorst, 2013) and derive an algorithm that performs a Fourier decomposition in an optimal
nonlinear oscillatory basis. This nonlinear basis is learned from data and is optimal in the
least-squares sense. Because of a symmetry relationship, we can leverage the Fast Fourier
Transform to obtain model parameters in a fast and scalable way.

When adopting a Machine Learning perspective, because the theoretical and practical
contributions of this work are primarily based on Koopman theory (Mezić, 2015), they
can be understood by analogy to Cover’s theorem, which enabled the breakthroughs that
have led to the development of Kernel Methods (Scholkopf and Smola, 2001) and Deep
Learning (LeCun et al., 2015). Succinctly, Cover’s theorem states that for any data set of
finite length there always exists a nonlinear transformation such that in the transformed
space, the data can be described by linear methods, i.e. it is linearly separable. Analogously,
Koopman theory postulates that any nonlinear dynamical system can be lifted by a time-
invariant but nonlinear function into a space in which its time evolution can be described
by linear methods, i.e. by a linear dynamical system (Kutz et al., 2016). This analogy is
depicted graphically in Fig. 1.

For finite amounts of data, Cover’s and Koopman’s theorem can be made to hold in
a trivial way by projecting the data into an N dimensional space, where N denotes the
number of data points. For Cover’s theorem, a nonlinear function can be devised that
maps the n-th data point to the indicator vector that is 0 everywhere except for the n-th
position, where it is 1. By doing so, every finite data set can be made linearly separable by
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Figure 1: Top: Left shows the phase portrait of a nonlinear system that can be described
as a linear system in three dimensions, as shown in the right panel. Bottom: The
exclusive-or problem does not have a linear solution in 2D, but does in 3D.

constructing a weight vector w ∈ RN that is 1 for all data points belonging to one class
and 0 for the other, i.e. by simply enumerating the training set. Similarly, Koopman’s
theorem can be made true in an N dimensional space by the means of the discrete Fourier
transform. Since sine and cosine pairs are linear dynamical systems and every sequence
of N equidistantly sampled data points can be explained by N equidistant Fourier modes.
However, both trivial solutions are not useful in practical scenarios since they do not allow
for generalization. Note that the inability of the trivial solution of Koopman’s theorem to
generalize stems from implicit periodicity assumptions of the discrete Fourier transform.
We will show later how these implicit periodicity assumptions can be broken in order to
allow for generalization.

We leverage Koopman theory for forecasting by constructing the linear Koopman op-
erator that characterizes the time evolution of a dynamical system, even chaotic systems.
However in practice, such chaotic systems result in a Koopman operator that is infinite
dimensional. In this work, we focus our investigation on systems for which a finite dimen-
sional Koopman operator exists (Brunton et al., 2016b), and furthermore restrict the scope
to systems that preserve energy, or persist over long times, i.e. quasi-periodic systems.
Mathematically speaking, we require the following property of the time series data xt:

lim
T→∞

F [f−1(x1), ..., f−1(xT )] =

N∑
n=1

δ(ω − kn)
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where F is the Fourier transform, f is a function, and f−1 its pre-image, and finite N .
When systems fulfill these properties, we show empirically that stable long-term forecasting
can be accomplished.

2. Fourier and Forecasting

When Fourier studied heat transfer in the early 19th century, he discovered that solutions to
the heat equation can be simply represented as a superposition of sines and cosines (Fourier,
1822). This finding was generalized and ultimately resulted in what is known today as
the Fourier Transform. In the 1960s, Cooley and Tukey (re)discovered the Fast Fourier
Transform (FFT), which allows for the computation of coefficients of the discrete Fourier
transform in O(T log T ) given a signal sampled at T equidistant points in time (Cooley and
Tukey, 1965). The computational speed up relies on evaluating the Fourier transform at
integer multiples of 1

T , which in turn implicitly assumes that the signal is periodic with
period T , since

xt+T =
N∑
n=1

ane
−j2π(t+T ) n

T = xt

This assumption, unfortunately, makes the FFT unsuitable for forecasting anything but
strictly T -periodic signals. However, in the following, we will treat the FFT as a computa-
tionally efficient optimization tool that, in conjunction with gradient descent, allows us to
fit a linear dynamical system yt to an observed signal xt. The strategy is as follows: Given
an optimization problem, we will derive an expression for a loss as a function of model
parameters in the frequency domain and then use the FFT to evaluate the loss and pick
optimal parameters. This strategy is similar to the initial idea of Fourier, i.e. to express an
otherwise difficult problem in the frequency domain in which finding a solution is signifi-
cantly easier. As we will show later, the difficulty of finding a solution in time-domain stems
from the fact that the optimization objective is highly non-convex. However, note that in
order to leverage the computational efficiency of the FFT, implicit periodicity assumption
are being made. While these periodicity assumptions bring about computational efficiency,
they prohibit forecasting but they can easily be broken by subsequently applying gradient
descent to improve an initial guess provided by the FFT.

Let yt ∈ Rm be measurements of a linear dynamical system, i.e. yt = Byt−1. The goal is
to infer an optimal linear mapping between a measured signal xt ∈ Rn and yt. Specifically,
the goal is to solve:

minimize E(A,B) =

T∑
t=1

(xt −Ayt)
2

subject to yt = Byt−1

Since we assume xt to be quasi-periodic, we in turn assume B to have strictly imaginary
eigenvalues. For the continuous time solution of yt, the following holds:

yt =

n∑
i=1

(li · y0) rie
λit (1)
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where li, ri and λi denote the ith left and right eigenvector and the ith eigenvalue of B,
respectively. Note, because eigenvalues and eigenvectors of real-valued square matrices come
in conjugate pairs, we can rewrite equation (1) as:

yt =

n/2∑
i=1

(li · y0) rie
λit + ((li · y0) ri)

∗e−λit

=

n/2∑
i=1

bie
λit + b∗i e

−λit

Since we assume λi to be strictly imaginary, let λi = jωi. We can further simplify:

yt =

n/2∑
i=1

2Re(bi) cos(ωit) + 2Im(bi) sin(ωit)

= 2
[
Re(b1) · · · Re(bn/2) Im(b1) · · · Im(bn/2)

]


cos(ω1t)
...

cos(ωn/2t)

sin(ω1t)
...

sin(ωn/2t)


= 2B

[
cos(~ωt)
sin(~ωt)

]
Without loss of generality, because A is a free-parameter of the optimization problem,

we can omit 2B and absorb this into A:

yt =

[
cos(~ωt)
sin(~ωt)

]
:= Ω(~ωt) (2)

Thus, under the assumption that B only has imaginary eigenvalues, we can rewrite the
minimization problem in the following way:

Li(A, ~ω, t) := [(xt)i − (AΩ(~ωt))i]
2

L(A, ~ω, t) = ||xt −AΩ(~ωt)||22 (temporally local loss)

=
n∑
i=1

Li(A, ~ω, t)

E(A, ~ω) =
T∑
t=1

L(A, ~ω, t) =
T∑
t=1

n∑
i=1

Li(A, ~ω, t) (global loss) (3)

The question arises which optimization procedure to employ to solve (3) for ~ω. Note
that the assumption of suitable convexity required for gradient descent to perform well does
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not hold. This can be understood by realizing that the sensitivity of the loss with respect
to ~ω grows linearly in time which in turn can be understood easily by investigating the
gradients of the loss with respect to ~ω.

∂L(A, ~ω, t)

∂~ω
= 2t

[
− sin(~ωt)
cos(~ωt)

]
[xt −AΩ(~ωt)]

This implies that the magnitude of gradients grows linearly with time which in turn
entails that gradient descent disproportionately considers the loss function of temporal
snapshots close to T . This effect can also be understood by realizing that L(A, ~ω, t) is
periodic in 2π

t with respect to ~ω which follows directly from the properties of the sine and
cosine functions, since:

L(A, ~ω +
2π

t
, t) = ||xt −AΩ((~ω +

2π

t
)t)||22

= ||xt −AΩ(~ωt)||22
= L(A, ~ω, t)

Note that this entails that the temporally local loss functions close to T will oscillate
rapidly and therefore create local minima in which gradient descent will get stuck.

In order to overcome these issues, we will derive an algorithm that under some conditions
finds global minimizers by performing coordinate descent on E(A, ~ω). Coordinate descent
updates model parameters in a sequential fashion starting with an initial guess of ~ω(0).

ω
(k)
i = arg min

ωi

E(ω
(k)
1 , .., ω

(k)
i−1, ωi, ω

(k−1)
i+1 , .., ω(k−1)

m )

Under some conditions (Tseng, 2001), for k = 1, 2, 3, ..., ~ω(k) converges to a minimizer
of E. We will now show that the update-step in the direction of ωi can be performed in
a computationally efficient manner using the FFT. Let Mi = {A,ω1, .., ωi−1, ωi+1, .., ωm},
i.e. the set of all model parameters except ωi. We will derive an analytic expression for
E(ωi;Mi) in the frequency domain which allows us, by applying the FFT, to compute the
entire error surface and pick the optimal value for ωi.

Let Ll(ωi;Mi, t) be the temporally local loss as a function of only ωi, i.e. while keeping
all other model parameters fixed and only considering the lth dimension of the loss and let
I(i) = {1, .., i− 1, i+ 1, .., i+ n/2− 1, i+ n/2 + 1, .., n} be the set of all indices sans i and
i+ n/2 := i2, then:

Ll(ωi;Mi, t) = [(xt)l − (AΩ(~ωt))l]
2

= [(xt)l −
∑
k∈I(i)

Al,kΩ(~ωt)k︸ ︷︷ ︸
=R(i)t,l

−Al,i cos(ωit)−Al,i2 sin(ωit)]
2
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Note that R(i) defines the residual that captures the difference between Ayt and xt but
ignores all terms that involve ωi.

El(ωi;Mi) :=
∑
t

Ll(ωi;Mi, t)

=
∑
t

(R(i)l,t −Ai,l cos(ωit)−Ai2,l sin(ωit))
2

=
∑
t

[R(i)2
l,t −A2

i,l cos2(ωit)−A2
i2,l sin

2(ωit)

− 2R(i)l,tAi,l cos(ωit)− 2R(i)l,tAi2,l sin(ωit)

+ 2Ai,lAi2,l cos(ωit) sin(ωit)] (4)

We proceed by investigating this loss function at extrema of A.

∂El(ωi;Mi)

∂Ai,l
=
∑
t

−2Ai,l cos2(ωit)− 2R(i)l,t cos(ωit) + 2Ai2,l cos(ωit) sin(ωit)

∂El(ωi;Mi)

∂Ai2,l
=
∑
t

−2Ai2,l sin
2(ωit)− 2R(i)l,t sin(ωit) + 2Ai,l cos(ωit) sin(ωit)

From ∂El(ωi;Mi)
∂Ai,l

= 0 and ∂El(ωi;Mi)
∂Ai2,l

= 0, we can derive the following respectively:

Ai2,l

∑
t

cos(ωit) sin(ωit) =
∑
t

Ai,l cos2(ωit) + R(i)l,t cos(ωit) (5)

Ai,l

∑
t

cos(ωit) sin(ωit) =
∑
t

Ai2,l sin
2(ωit) + R(i)l,t sin(ωit) (6)

Plugging both of these findings into (4) yields:

El(ωi;Mi) =
∑
t

[R(i)2
l,t −R(i)l,tAi,l cos(ωit)−R(i)l,tAi2,l sin(ωit)]

Since our goal is to employ the FFT to evaluate E(ωi;Mi), we assume that all ωi = k
T

with k ∈ N. This entails that
∑T

t cos2(ωit) =
∑T

t sin2(ωit) = T/2,
∑T

t cos(ωit) sin(ωit) = 0.
We can then deduce from (5) and (6) respectively, that:

Ai,l =
2R(i)l,t cos(ωit)

T

Ai2,l =
2R(i)l,t sin(ωit)

T

Therefore:

El(ωi;Mi) =
T∑
t

R(i)2
l,t −

2

T
(
T∑
t

R(i)l,t cos(ωit))
2 − 2

T
(
T∑
t

R(i)l,t sin(ωit))
2
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Let R̂(i)l,ωi
be the Fourier transform of R(i)l,t, then:

E(ωi;Mi) =
n∑
l

(
T∑
t

R(i)2
l,t −

2

T
Re(R̂(i)l,ωi

)2 − 2

T
Im(R̂(i)l,ωi

)2)

=||R(i)||F −
n∑
l

2

T
|R̂(i)l,ωi

|2

Thus, there is a symmetry relationship between the error surface and the Fourier coef-
ficients of the residual. This symmetry is sketched in Figure 2. In the following, we will
exploit this symmetry by using the FFT to locate the valley of global optimum of E(ωi;Mi)
with precision 1/T in a computational efficient way. Note that precision of 1/T usually suf-
fices to locate the global optimum for reasonably sized data set. If this precision should not
suffice, it is always possible to oversample the FFT by appending zeros in time domain.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
i

E( i; Mi)
|FT[R(i)]|2

|FFT[R(i)]|2

Figure 2: Symmetry between the squared error, i.e. E(ωi;Mi), and the Fourier transform of
the residual. Colloquially speaking, the absolute value of the Fourier coefficients
moved up and flipped on the x-axis constitutes the error surface.

2.1 Breaking periodicity

As laid out earlier, when computing the FFT of the residual, i.e. when evaluating E(ωi;Mi)
at integer multiples of 1

T , implicit periodicity assumptions that are harmful for the purpose
of forecasting are being made. However, we can exploit the FFT to locate the valley in which
the global minimum resides and then apply gradient descent to improve this initial guess
and thereby breaking periodicity assumptions. The procedure is depicted graphically in
Figure 3 and algorithmically in Algorithm 1. Because gradients with respect to frequencies
grow linearly with time (sin(ωt)′ = t cos(ωt)), the learning rate with respect to the frequency
vector ~ω need to be scaled by T in order to ensure stability of the gradient descent procedure.
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Figure 3: Graphical depiction on how the FFT and gradient descent are combined to extract
global minima of the error surface. The FFT is employed to generate an initial
guess of the valley in which the global optimum resides, then subsequently this
initial guess is refined by gradient descent.

Algorithm 1 Learning a linear oscillator from data

Randomly initialize ~ω and A
while not converged do

for i ∈ {1, .., n} do
ωi ← arg minωi E(ωi;Mi) (using the FFT)
while not converged do

ωi ← ωi − α
T
∂E(ωi;Mi)

∂ωi
. Refine initial guess via GD

end while
A← (ΩTΩ)−1ΩTX . Optimize A using pseudo-inverse

end for
end while

The technique described in Algorithm 1 overcomes the weaknesses of the respective
optimization techniques. Note that, as described earlier, while gradient descent from a
random initial starting point will overemphasize temporally local losses close to T , the FFT
will do the opposite. In order to fulfill the periodicity assumption, temporally local losses
at the edges, i.e. close to 0 and T , will usually be underemphasized. While gradient descent
can ‘get stuck’ in local minima and generally struggles with the fact that the sensitivity with
respect to the precision of the model parameters grows linearly with time, the FFT relies on
periodicity assumptions in order to be computationally efficient. In a sense, gradient descent
and the Fast Fourier Transform are local and global optimization techniques respectively
and in this work, we combines global and local techniques to arrive at a global minimizer
in a computationally efficient manner.
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2.2 Connection to Spectral Leakage and Bayesian Spectral Analysis

Consider the case when xt and yt are one- and two-dimensional respectively. In that case,
R(1) = xt which entails that

E(ω) =
∑
ω′

x̂(ω′)2 − 2

T
|x̂(ω)|2

Thus, the error of the model is closely linked to the Fourier coefficients. In a sense, this
augments the traditional view of the semantics of the Fourier coefficients. In the traditional
understanding, the signal is assumed to exhibit a continuous spectrum and the real and
imaginary parts of Fourier coefficients denote the amplitude of the corresponding sines and
cosines.

Consider the signal xt = cos(ωt). The Fourier transform of xt is a Dirac delta function
centered at ±ω. However, the discrete Fourier transform of a finite amount of equidistant
samples from xt will exhibit sinc-shapes. This effect, usually referred to as spectral leak-
age (Lyon, 2009), has been studied extensively in the signal processing community. Spectral
leakage occurs when computing the FFT with finite amounts of data and can be explained
in the following way: A signal of finite length can be understood as the product of an
infinitely long signal and the rect function stretched to T . Because rect and sinc functions
are Fourier pairs and multiplication in time domain is equivalent to a convolution in fre-
quency domain, for quasi-periodic systems, the FFT will locally exhibit the shape of the
sinc function. Thus, given finite amounts of data, the FFT will appear to be continuous
even though the data generating process, in the limit, exhibits a discontinuous frequency
spectrum. This reasoning also explains why combining the FFT and gradient descent is
a promising strategy: The error surface is globally non-convex but because sinc functions
are suitably convex, there is local convexity. The FFT overcomes global non-convexity and
gradient descent exploits local convexity.

The amount of data provided influences the width and height of the sinc function. As
T increases, the height increases and width decreases. This entails that the more data is
provided, the higher the precision with which the frequencies can be extracted from data.
This view coincides and is to some degree analogous to the work by E.T. Jaynes (Jaynes,
1987) and Bayesian Spectral Analysis (Bretthorst, 2013). In Bayesian Spectral Analysis, a
probabilistic model of the signals spectrum is assumed and posterior inference is performed
in order to obtain the most likely model parameters given the data. Interestingly, if one
assumes the signal to be a simple harmonic oscillation corrupted by Gaussian noise with
unknown frequency ω, the DFT provides sufficient statistics of the probability that a specific
frequency is present in the data. Assume X1:T is zero-mean unit-variance and sampled at
T equidistant points in time and x̂(ω) its Fourier transform, then it can be shown that:

p(ω|X1:T , σ) ∝ exp

[
|x̂(ω)|2

σ2

]
(7)

p(ω|X1:T ) ∝
[
1− 2|x̂(ω)|2

T

]1−T
2

(8)

10



Spectral Methods for Long-term Time Series Prediction

12H1D1W

E(
i)

12H1D1W

E(
i|

=
2 24

)

Figure 4: Top: The error surface when no previous frequencies have been selected. Red ‘x’
mark the 50 frequencies with the lowest error. Bottom: The same error surface
but when daily patterns have been explained away.

with, if known, σ denoting the standard deviation of the Gaussian noise corrupting the
signal. Because the squared error is closely linked to the probability of the Gaussian distri-
bution, this result may come as no surprise to some.

Furthermore, note that the application of coordinate descent in the way described in
Algorithm 1 has the property of ‘explaining away’. Because of spectral leakage, even if
the true latent process exhibits a frequency spectrum that is a superposition of Dirac delta
functions, the Fourier transform will exhibit sinc-like shapes. Thus, a näıve approach that
computes the error surface and extracts the k frequencies associated with the smallest error
might select frequencies that can be explained away by a single frequency. However, by
sequentially selecting frequencies, entire sinc-shapes are deleted. This is shown graphically
in Figure 4.

2.3 Related Work

The class of algorithms that bears the highest resemblance to the introduced algorithm is
Dynamic Mode Decomposition (Schmid, 2010) (DMD). DMD was first introduced to extract
the dynamic behavior in fluid flows but has since been applied in various fields, such as epi-
demiology (Proctor and Eckhoff, 2015), acoustics (Song et al., 2013), neuroscience (Brunton
et al., 2016a), combustion modeling (Moeck et al., 2013) and video processing (Erichson
et al., 2019a). A strong connection between DMD and Koopman theory has been established
in the past. Specifically, DMD approximates the Koopman operator when the observables
are restricted to direct measurements of the state variable (Rowley et al., 2009; Mezic, 2013;
Tu et al., 2014; Brunton et al., 2016b; Kutz et al., 2016).

The goal of DMD is to discover a low-dimensional linear system that captures most
of the dynamic behavior of a potentially high dimensional phenomenon. Given temporal
snapshots xt, DMD first applies a dimensionality reduction technique and subsequently
learns parameters of a linear system. Let Z1 and Z2 denote the collection of low-dimensional
temporal snapshots starting at 1 to T − 1 and 2 to T respectively. The parameters of the
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linear system are usually obtained by means of pseudo-inverse, i.e. by solving Z2 = AZ1.
In a sense, the algorithm introduced earlier can be understood as a scalable and stable way
to perform the second step of DMD, i.e. to learn parameters of the low-dimensional linear
system, however by the means of FFT instead of pseudo-inverse. This is also reflected in
the parameterization of the linear system. While DMD extracts a matrix A, our algorithm
extracts a vector of frequencies ~ω.

One of the main challenges for DMD-like algorithms is the fact that, under the assump-
tion of merely measurement noise, the pseudo-inverse estimator of A is biased (Hemati
et al., 2017; Dawson et al., 2016). Note that this bias can be explained by the fact that
the pseudo-inverse estimator performs one-step-ahead predictions. This challenge has been
acknowledged in the research community and approaches have been proposed to mitigate
this problem, most notably with the introduction of optimized DMD (Chen et al., 2012) and
de-biasing techniques (Hemati et al., 2017). However, solving the optimized DMD objective
proves difficult (Askham and Kutz, 2018). Note that the optimization objective introduced
in equation (3) is equivalent to the optimized DMD objective with the additional constraint
that eigenvalues λi come in conjugate pairs and are strictly imaginary which ultimately
allows to obtain a globally optimal and unbiased estimator in the direction of ωi. The
fact that this frequency estimator is unbiased under the assumption of merely measurement
noise is easy to understand and in the following we will give the intuition why this is true but
the reader is referred to pre-existing work in Bayesian Spectral Analysis (Bretthorst, 2013)
for a more thorough treatment of the issue. For a signal corrupted by measurement noise,
the following holds: xe(t) = x(t) + ε(t). As long as Cov(ε(t1), ε(t2)) = 0 and E[ε(t)] = 0,
the Fourier transform of ε(t) is ε(t) which entails, because the Fourier transform is linear,
that adding noise in time domain is equivalent to adding noise in frequency domain. Thus,
measurement noise does not add bias but uncertainty.

Note that previously a strong connection between the Fourier Transform and DMD
(Chen et al., 2012) has been shown. In (Chen et al., 2012), the authors advocate not to
subtract the mean of the data to avoid reducing DMD to the DFT to ultimately avoid
the pitfalls of the DFT, i.e. making harmful and unnecessary periodicity and stationarity
assumptions. In this work, enforcing stationarity is a design goal and, as pointed out
earlier, periodicity assumptions are broken by the subsequent application of gradient descent
in order to obtain frequencies that are not periodic in T . Note that the assumption of
stationarity is an inductive bias and from data alone, it is usually impossible to determine
whether a slow increase in the signal is caused by an upward trend or a slow frequency.
Furthermore, the introduced algorithm allows to model n-dimensional signals composed
of m frequencies with m > n. Note that the original DMD formulation does not allow
this because the dimensionality of the signal is directly tied to the number of frequencies
that can potentially be extracted. However, approaches to mitigate this problem have been
introduced based on mostly delay embeddings (Tu et al., 2014; Brunton et al., 2016a, 2017;
Kamb et al., 2018; Pan and Duraisamy, 2019b). Our algorithm naturally allows one to
model low-dimensional signals without these additional steps.
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a)

b)

Figure 5: Two signals that both exhibit linearly decaying but infinite frequency spectra.

3. Koopman and Forecasting

Consider the two signals depicted in Figure 5. It is easy to show analytically that both
signals exhibit linearly decaying but infinite frequency spectra. However, one could argue
that both signals consist of only a single oscillatory pattern that is however not easily ex-
pressed by sines and cosines. This raises the question of whether expanding the signal in
the basis of sines and cosines is the correct choice and what a better choice of oscillatory
basis functions is. Note that optimal basis functions for the two signals are most likely
different which implies that the choice of basis functions is dependent on the signal.

In the following, we will derive an algorithm based on Koopman theory that tries to
answer these questions. Specifically, we will derive an algorithm that performs a frequency
decomposition in a nonlinear basis. The nonlinear oscillatory basis as well as a least-
squares fit is learned jointly from data. The algorithm will retain the notions of frequency
and periodicity and will therefore provide some feedback to practitioners of the duration
of the extracted patterns. Because the resulting algorithm is closely linked to the Fourier
transform, we will show how the Fast Fourier Transform can be leveraged to obtain model
parameters in a computationally efficient and scalable manner similar to approach intro-
duced earlier, in spite of non-convexities and nonlinearities.

Koopman theory postulates that any nonlinear dynamical system can be lifted into the
space of observable functions ψ, in which the system evolves linearly. Specifically, it can be
shown that there always exists a K such that:

ψ(xt) = kt = Kkt−1 = Kψ(xt−1) (9)

with K commonly referred to as the Koopman operator. Note that the Koopman operator
and therefore kt might be infinite dimensional and that ψ and K are usually unknown.

Even if K and ψ were known, forecasting xt would still not be trivial because even
though one could evolve kt into the future, transforming knowledge of future values of kt
into knowledge of xt is complicated. This is why in the past, ψ was often assumed to be
invertible. Additionally, it was assumed that ψ can be approximated by a function (as
opposed to a functional). In the following, we will show that these assumptions severely
limit the applicability of Koopman theory. Specifically, we will show that these assumption
imply that if xt takes the same value for two points in time t1 and t2, future values xt1+1
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and xt2+1 must be equal. Or mathematically speaking, xt1 = xt2 ⇐⇒ xt1+1 = xt2+1.

xt1 = xt2 ⇐⇒ f(xt1) = f(xt2) (f is function and invertible)

Evolving f(xt) into the future using the Koopman operator yields:

f(xt1+1) = Kf(xt1) = Kf(xt2) = f(xt2+1) ⇐⇒ xt1+1 = xt2+1

By making the assumption of invertibility and that ψ can be approximated by a func-
tion, even very simple systems such as xt = cos(t) cannot be lifted into a space where it
evolves linearly. Let t1 = π

2 and t2 = 3π
2 , which implies that xt1 = 0 = xt2 . However,

xt1+1 < 0 and xt2+1 > 0. Note that lifting xt into a space where it evolves linearly is trivial

using a functional (as opposed to function): Let ψ(f) =

[
f
f ′

]
, then ψ(xt) =

[
cos(t)
sin(t)

]
which

evolves linearly.

In order to overcome these limitations but still allow for forecasting of xt, we make
slightly different assumptions. In order to allow for forecasting, we assume ψ to be invertible
but we only assume that ψ−1 can be approximated by a function f . Therefore:

xt = f(kt) with kt = Kkt−1 (10)

Additionally, similar to the reasoning laid out earlier, we assume K to have strictly imag-
inary eigenvalues, which in turn implies that, if kt is being projected onto the eigenvectors
of K, the following holds:

kt =

[
cos(~ωt)
sin(~ωt)

]
:= Ω(~ωt) (11)

3.1 Nonlinear Frequency Decomposition

By making the above mentioned assumptions, we arrive at an interpretation of Koopman
theory that bears resemblance to the Fourier transform. Specifically, while the Fourier
transform expands a signal xt into a possibly infinite sum of sines and cosines, the trans-
formation that results from our interpretation of Koopman theory explains the signal as a
nonlinear function of sines and cosines. Thus, it explains the signal in a nonlinear oscil-
latory basis but because we assume the nonlinear function f to be time-invariant, notions
of frequency and periodicity persist, i.e., if Ω(~ωt) is periodic with period P , then f(Ω(~ωt))
will also be periodic with period P .

xt = AΩ(~ωt) (Fourier)

xt = f(Ω(~ωt)) (Koopman)

Let f be parameterized by Θ. The minimization problem we wish to solve is therefore:

minimize E(~ω,Θ) =

T∑
t=1

(xt − fΘ(Ω(~ωt)))2 (global loss) (12)

=

T∑
t=1

L(~ω,Θ, t) (sum of temporally local losses)
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In the following, we will derive computationally efficient strategies to solve this optimization
problem. Again, similar to the algorithm introduced earlier, coordinate descent will be per-
formed on (12). We will show how a global minimizer in the direction of ωi can be obtained
in a computationally efficient manner using the FFT. Note that optimizing E in the di-
rection of Θ can be achieved efficiently using Dynamic Programming, specifically using the
Backpropagation algorithm, whose implementation is trivial in programming packages that
allow for automatic differentiation. However, the question of how to optimize ~ω remains.

Let Mi = {Θ, ω1, .., ωi−1, ωi+1, .., ωm}, i.e. the set of all model parameters except ωi.
Let L(ωi;Mi, t) be the loss as a function of solely ωi, i.e. while keeping all other model
parameters fixed. Recall that L(ωi;Mi, t) is periodic in 2π

t . The periodicity property follows
directly from characteristics of the sine and cosine function:

sin((ωi +
2π

t
)t) = sin(ωit+ 2π) = sin(ωit)

Thus, in a span of 2π, a temporally local loss function at t repeats itself t-times as shown
graphically in Figure 6. It is therefore sufficient to compute the loss in the first period
and then extrapolate this knowledge by simple repetition. Equipped with this knowledge
an efficient strategy can be devised: Each temporally local loss function is sampled at N
equidistant points between 0 and 2π

t :

for n = 1, .., N sn =
n

N

2π

t
Si,t[n] = L(sn;Mi, t) (13)

Note that this step can be carried out in parallel and is therefore surprisingly fast and
that for every i and t, Si,t[n] is periodic with period N . In order to obtain the global
loss E(~ω,Θ), in a subsequent step, the temporally local loss functions are summed up by
repeating the loss at time point t, t times and then aligning the sampling intervals. This
seemingly easy step proves challenging because of the different scales of the samples drawn
from the local loss functions. However, because summation requires that temporally local
loss functions to be repeated and interpolated, this step can be performed efficiently in
frequency domain (O(T log T )) by zero-stuffing and zero-padding respectively, avoiding the
computational burden of a näıve time-domain implementation (O(T 2)).

Repeating the local loss functions can be achieved efficiently by inserting t-many 0’s in
between values of the FFT of the samples drawn (zero-stuffing). Then, in order to match
scales, temporally local loss functions are interpolated by appending 0’s in frequency domain
(zero-padding).

Therefore:

for k = 0, ..,K Si,t[k] =
N∑
n=1

Si,t[n]e−jπ
nk
K (14)

For the frequency spectrum of the global loss function then holds:

for l = 0, ..,KT Ei(l) =

T∑
t=1

K∑
k=0

Si,t[k]δ(tk − l) (15)
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Figure 6: The temporally local loss function at time t oscillates with period 2π
t . In order

to reconstruct the global loss, it is sufficient to evaluate each local loss function
within the first period.

Algorithm 2 Learning a nonlinear oscillator from data

Randomly initialize ~ω and Θ
while not converged do

for i ∈ {1, .., n} do
Compute Si,t[k] . Based on (13) and (14)
E ← [0]TK

for t ∈ {1, .., T} do
for k ∈ {0, .., 2N} do

E[tk]← E[tk] + Si,t[k] . Implements (15)
end for

end for
ωi ← arg minω F [E](ω)
while not converged do

ωi ← ωi − α
T
∂E(ωi|~ω)
∂ωi

. Refine initial guess of ωi
end while
for a couple of iterations do

Θ← Θ− α∂E(~ω,Θ)
∂Θ . Gradient descent on Θ

end for
end for

end while
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Thus, similar to the previously introduced algorithm, we derived a computationally
efficient expression for the frequency spectrum of the error function which allows us to
obtain the approximate location of the optimal parameter ωi. This initial guess is then
refined using gradient descent. The resulting algorithm is described in Algorithm 2.

3.2 Related Work

The fact that any nonlinear dynamical system can be lifted by the means of observables
into a space where its time evolution can be described by linear methods was first intro-
duced by Koopman for Hamiltonian systems (Koopman, 1931) and later generalized to
continuous-spectrum systems (Koopman and Neumann, 1932). Even then it was of con-
siderable importance as a building block for advances in ergodic theory (Birkhoff, 1931;
Neumann, 1932b; Birkhoff and Koopman, 1932; Neumann, 1932a; Moore, 2015). Interest
in Koopman theory was renewed by work by Mezić (2005); Budǐsić et al. (2012); Mezic
(2013). More recent theoretical advances in Koopman theory e.g. include generalization of
the Hartman-Grobman theorem to the entire basin of attraction of equilibrium points or
periodic orbits (Lan and Mezić, 2013).

Recent applied research has focused on algorithms to estimate the Koopman operator
from data. Most of these approaches rely on auto-encoder structures (Otto and Rowley,
2019; Lusch et al., 2018; Yeung et al., 2019; Wehmeyer and Noé, 2018; Takeishi et al., 2017).
The optimization objective is usually constituted of terms that encourage linearity in the
latent space as well as reconstruction performance and is usually solved by means of gradi-
ent descent. These approaches have been extended in various ways. For example, Bayesian
Neural Networks as encoders were utilized to extend Koopman theory to the probabilistic
setting (Pan and Duraisamy, 2019a) whereas Champion et al. (2019) relaxed the linearity
requirement and allowed for sparse dynamics in the latent space. These approaches usually
do not consider linearity in Koopman-space a constraint but rather the optimization objec-
tive. This usually results in latent spaces that are approximately and only locally linear.
On top of that, unstable eigenvalues often cause difficulties. In Erichson et al. (2019b),
stable eigenvalues are encouraged through additional regularization by means of Lyapunov
stability. In this work, on the other hand, global linearity and stability are constraints of
the optimization objective, i.e. all solutions are globally linear and stable by construction
without the need for any additional regularization. Furthermore, in this work, we show that
the global optimization objective is highly non-convex limiting the practicality of gradient
descent and show how solutions can be obtained in frequency domain.

The Fourier and Koopman Forecast algorithms are also tangentially related to phase
retrieval (PR) algorithms (Fienup, 1982; Saxton, 2013; Metzler et al., 2018). These al-
gorithms usually assume partial knowledge in time and/or Fourier domain and the goal
is to reconstruct missing phase information. PR algorithms find application in wavefront
sensing, beam shaping, optical encryption, optical refraction tomography, x-ray coherent
diffractive imaging, etc. Whereas PR assumes partial knowledge in Fourier and/or time
domain and the goal is inference of unknown phase quantities, the Koopman/Fourier algo-
rithms assume full knowledge in time domain and the objective is prediction. Similarly to
the Koopman/Fourier algorithm, PR methods oftentimes solve their objective function in
an alternating fashion, i.e. by iteratively updating unknown quantities in time and then
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Fourier domain. However, unlike the methods described in this paper, PR algorithm do
not seem to be confronted with the problem of obtaining optimal frequencies for time-series
prediction from data.

4. Algorithmic properties

In this section, basic properties of the algorithms are derived.

4.1 Universal approximation capabilities

4.1.1 Finite data

We will show that even the linear Fourier-based algorithm has universal approximation
capabilities for finite data sets. More formally, we show by construction that there always
exists finite model parameters that can explain any finite data set. Note that this property is
not very useful in practice because the solution does not allow to generalize as it implicitly
assumes that the signal is periodic in T . It is included here because it is analogous to
Cover’s theorem. Similarly to Cover’s theorem, colloquially speaking, we will show that
even the linear Fourier-based algorithm can always overfit on the training set. Analogous
to Cover’s theorem, the proof requires projecting the data into an N -dimensional space. In
summary, Cover’s theorem and the Fourier-based algorithm both have trivial solutions in
N dimensions that however do not generalize.

Lemma 1 (Finite data: Universal approximation capabilities) Assume T equidis-
tant samples x1, ..., xT . There always exist finite-dimensional ~ω and A such that, AΩ(ωt) =
xt. Proof by construction: Choose M = T/2 and for i = 1, ..,M let ωi = 2πi

T . Let O ∈ RT×T
the matrix whose ith and (i + T/2)th rows constitute cos(ωit) and sin(ωit) evaluated at
t = 1, .., T , respectively. What is left to show is that O forms a basis of RT which follows
directly from

i 6= j :

T∑
t=1

sin(
2πit

T
) sin(

2πjt

T
) = 0

i 6= j :

T∑
t=1

cos(
2πit

T
) cos(

2πjt

T
) = 0

i 6= j :

T∑
t=1

sin(
2πit

T
) cos(

2πjt

T
) = 0

4.1.2 Infinite data

However, when the signal is assumed to be infinite, we will show that the Koopman-based
algorithm is more expressive compared to its Fourier counterpart. Specifically, we will show
that there are signals for which the Fourier algorithm would require infinite model size,
while the Koopman algorithm allows for a finite parameterization. The signal for which
this is shown is a simple square wave.
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Lemma 2 (Infinite data) Let % denote the modulo operator and consider the time-discrete
system that evolves according to the following equations:

xt =


1, for t%4 = 0

1, for t%4 = 1

0, otherwise

It is well known that the discrete-time Fourier transform of xt is linearly decaying but
infinite. The system can however be modeled with a simple nonlinear function f and a single
frequency:

f(x) =

{
1, for x > 0

0, otherwise

xt = f(cos(
π

2
t))

4.2 Error bounds

In the following, practical error bounds for the Fourier algorithm will be derived as a function
of prediction horizon, noise and amount of data provided.

Lemma 3 (Fourier: Linear-in-time error bounds) Let xt(~ω) = AΩ(~ωt) =
∑N/2

i=1 Ai cos(ωit)+∑N
i=N/2+1Ai sin(ωit) ∈ R. Given number of data points T , number of frequencies N/2 and

noise variance σ2, for the prediction error at horizon t then holds:

|x̂t(~ω)− x̂t(~ω∗)| ∈ O
(

t√
T 3
Nσ2

)
Proof.

|xt(~ω)− xt(~ω∗)| = |
N/2∑
i=1

Ai cos(ωit) +

N∑
i=N/2+1

Ai sin(ωit)−
N/2∑
i=1

Ai cos(ω∗i t) +

N∑
i=N/2+1

Ai sin(ω∗i t)|

≤
N/2∑
i=1

|Ai|| cos(ωit)− cos(ω∗i t)|+
N∑

i=N/2+1

|Ai|| sin(ωit)− sin(ω∗i t)|

Note that sin(ωt) and cos(ωt) are Lipschitz continuous with constant t, therefore:

| sin(ωit)− sin(ω∗i t)| ≤ t|ωi − ω∗i |
| cos(ωit)− cos(ω∗i t)| ≤ t|ωi − ω∗i |

Because of that:

|xt(~ω)− xt(~ω∗)| ≤ t
N∑
i=1

|Ai||ωi − ω∗i |
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From Bayesian Spectral Analysis, we know the standard deviation of the uncertainty
with which the frequencies can be resolved. As was derived in Jaynes (1987):

ω = ω∗ ± σ2

|A|

√
48

T 3

Assume ωi was resolved within ρ standard deviations of ω∗i , then:

ω∗i − ρ
σ2

|Ai|

√
48

T 3
≤ ωi ≤ ω∗i + ρ

σ2

|Ai|

√
48

T 3

|ωi − ω∗i | ≤ ρ
σ2

|Ai|

√
48

T 3

Combining results yields:

|x̂t(~ω)− x̂t(~ω∗)| ≤ t
N∑
i=1

|Ai||ωi − ω∗i | ≤ ρ
t√
T 3

N∑
i=1

√
48σ2

|x̂t(~ω)− x̂t(~ω∗)| ∈ O
(

t√
T 3
Nσ2

)
Thus, the Fourier algorithm scales super-linearly with the amount of data provided and
degrades linearly with noise variance and prediction horizon t.

4.3 Convergence and stability: Unknown phase problem

As described earlier, because the Fourier and Koopman methods rely on coordinate descent,
they inherit the convergence properties of the optimization algorithm. Coordinate ascent
has known requirements for convergence that are however hard to verify in reality (Beck
and Tetruashvili, 2013; Spall, 2012). Note that both algorithms obtain optimal frequencies
ωi in sequence and optimize either A (Fourier) or Θ (Koopman) jointly. The question arises
to which degree guesses of frequencies and either A or Θ affect the stability and convergence
of the respective algorithms.

4.3.1 Fourier

In the case of the Fourier algorithm, a ‘bad guess’ of A does not affect the optimality of the
subsequent guess of ωi. This follows directly from the fact that when deriving the symmetry
relationship between the error surface and the Fourier coefficients, an analytic solution for
optimal A, i.e. a solution to ∂E

∂A = 0, was obtained which led to the elimination of A from the
objective function. That is why, the initial guess of A does not affect subsequent guesses of
ωi. The question to which degree guesses of {ωj}i 6=j affect the guess ωi remains. The answer
to the question is linked to the number of data points provided. The more data is provided,
the smaller the ‘radius of influence’ of the respective frequencies. This is due to the fact
that larger amounts of data lead to slimmer and peakier sinc-functions in Fourier domain,
and the fact that two frequencies are independent if their sinc-function do not overlap. This
also implies that in the limit of T →∞, guesses of {ωj}i 6=j do not influence ωi because the
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Figure 7: The error surface E(ω,Θ) of a signal exhibiting daily, weekly and seasonal pat-
terns. In this case fΘ is an untrained Neural Network.

corresponding sinc-functions have become Dirac deltas. These properties make the Fourier
algorithm stable and easy to use in practice. After the number of frequencies N are selected
by either domain knowledge, cross-validation or any hyper-parameters optimization scheme,
the algorithm almost always converges to the same solution given appropriate scaling of the
data and a small enough learning rate.

4.3.2 Koopman

Unfortunately, this story is different for the Koopman algorithm. Because of the non-
linearity f , the ‘radius of influence’ of frequencies is much harder to reason about. That
is why we conjecture that whether or not guesses of {ωj}i 6=j affect guesses of ωi is data
dependent. From experience, frequency guesses seem to not influence each other much.
However, because analytical solution to optimal Θ, i.e. ∂E

∂Θ = 0, are unavailable for most
non-linear functions fΘ and numerically computing the optimal parameters Θ for every
value that ωi can take is computationally extremely expensive, ‘bad initial guesses’ of Θ
influence subsequent guesses of ωi. However, the way in which this pathology manifests
itself is fortunately structured. Figure 7 shows the error surface E(ω) with respect to a
signal that exhibits daily, weekly and seasonal patterns given a neural network with random
weights, i.e. Θ was initialized randomly. It is easy to see that correct frequencies can be
identified. However, there is a price to pay for the non-linearity of f , namely that the
correct frequency merely cause the error function to deviate from its plateau. Thus, even
an upward spike in the error function can indicate a correct frequency. We call this issue the
unknown phase problem. Training the Neural Network for some iterations or rerunning the
experiments from different initial conditions often alleviates this problem. A heuristic that
significantly improves numerical stability is to flip spikes into a common direction followed
by the application of a Gaussian filter G, i.e. E# = G(|E−median(E)|). These properties
make the Koopman method more difficult to use in practice but, as we will show in the
next section, successful application of the Koopman algorithm can significantly improve
performance on noisy and high dimensional data.
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5. Experiments

The code for the Fourier- and Koopman forecasting algorithms is available at https://

github.com/helange23/from_fourier_to_koopman.

5.1 Synthetic experiments

In the following, the efficacy of the algorithms is probed on synthetic tasks and compared
to the Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997). LSTM is a
trainable nonlinear filter and one of the de facto standard tools to model time series. LSTMs
were initially developed to mitigate the problem of exploding or vanishing gradients by
choosing a specific neural architecture that ensures constant error flow. Note that exploding
gradients is also a problem we faced but instead mitigated by employing the FFT.

5.1.1 Forecasting nonlinear oscillators under measurement noise

In order to probe the performance of the resulting algorithms in long-term forecasting of
nonlinear oscillators under measurement noise, a synthetic time series is created. Specifi-
cally, we choose a strongly nonlinear signal resembling data at an hourly rate with daily
patterns that is corrupted by Gaussian noise, i.e.:

xt = sin

(
2π

24
t

)17

+ εt

In a first experiment, we vary the amount of training data provided to the models and
keep the noise variance fixed at 0.2. Each model is provided with 2000, 4000, 6000 and 8000
samples of xt and the performance at predicting the next 104 snapshots is evaluated. For
the LSTMs, a 5-layer 20-unit network comprising 15301 parameters was chosen. For long-
term predictions, previously predicted snapshots are recursively fed back into the network.
The LSTM is compared to the Koopman algorithm with a 3-layer decoder with roughly
the same number of parameters (16384) and a single frequency. The Fourier algorithm was
instantiated with 8 frequencies and therefore 24 parameters.

The left panel of Figure 8 shows the Relative Cumulative Error as a function of the
prediction horizon and the amount of provided training data. We define the Relative Cu-
mulative Error as:

RCE(h) =

∑T+h
t=1 (xt − x̂t)2∑T+h

t=1 x2
t

(16)

For the sake of readability, the right panel shows the performance of only the Fourier-
based and Koopman-based algorithms on a subset of the benchmarks when the prediction
horizon equals 104. Note that this experiment confirms the theoretical findings provided
earlier, namely that the algorithms scale super-linearly with the amount of data. Further-
more, note that the Koopman algorithm outperforms the Fourier algorithm. Figure 9 gives
the intuition why this is true.

Figure 9 shows the time-domain long-term forecasts of the respective algorithms. Note
that the LSTM seems to have correctly extracted the nonlinear shape of the waveform but
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Figure 8: Left panel shows the Relative Cumulative Error as a function of the amount of
training data provided. The right panel displays the Relative Cumulative Error
when the prediction horizon equals 104 but, for better visibility, leaves out the
results for the LSTM and T=2000.

Figure 9: Long-term forecasting results for T = 4000. Note that LSTMs correctly extract
the shape of the nonlinearity but fail to extract the correct frequency. Further-
more note that for the Fourier algorithm small Fourier modes seem to be drowned
by noise.

failed at extracting the correct frequency. The impression that LSTMs seem to be biased
frequency estimators will be reinforced in later experiments. Furthermore note that the
Koopman algorithm significantly outperforms the Fourier algorithm. While the Fourier
algorithm correctly extracted large Fourier modes from the data, it struggles extracting
smaller ones as they appear to be wiggling slowly out of phase. This behavior can be
explained by the theoretical findings earlier: smaller Fourier modes have a smaller signal-
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Figure 10: Robustness of the respective algorithms to noise. The amount of training data
is kept fixed at T = 4000 while noise variance is varied. The Koopman-based
algorithm significantly outperforms its Fourier counterpart as well as LSTMs.

to-noise-ratio compared to bigger ones and are therefore harder to detect correctly.

In a subsequent experiment, we probe the robustness of the respective algorithms to
noise by keeping the amount of training data fixed (T = 4000) and varying the variance
of the Gaussian noise corrupting the signal. Figure 10 shows the results. First, note
that the theoretical results are again confirmed, i.e. the performance of the algorithms
seems to degrade linearly with noise variance. Furthermore note that, again, the Koopman-
based algorithm outperforms its Fourier counterpart. This can, again, be explained by
the fact that the Fourier-based algorithm requires more Fourier modes to model the signal
appropriately. However, these additional Fourier modes often have small amplitudes and
therefore small signal-to-noise ratios and get therefore drowned out by noise quickly. The
Koopman-based algorithm avoids this pitfall as it requires fewer frequencies because it can
explain away harmonics using the non-linearity.

5.1.2 Traveling waves

For many data-driven modeling approaches to high dimensional systems such as e.g. fluid
flows, the dimensionality of the measurements are often first reduced by applying dimen-
sionality reduction techniques. The Koopman-based algorithm allows for jointly learning
the inverse of the transformation that reduces the dimensionality and therefore extends the
applicability of the techniques to high dimensional systems with which traditional dimen-
sionality reduction techniques such as Principal Component Analysis (PCA) struggle. A
standard example for systems with which PCA struggles are traveling waves. Because PCA
exploits redundancies in the co-variance structure of the measurements and measurements
within one cycle of a traveling wave are approximately uncorrelated, achieving good re-
construction with PCA requires many modes which in turn reduces robustness to noise as
highlighted in previous experiments. In the following, we will show how the Koopman-based
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algorithm can overcome these difficulties. Specifically, by showing how a 2D traveling wave
can be modeled with a transpose-convolutional decoder.

0 200 400 600 800
Time

Figure 11: A traveling wave for which reducing the dimension with PCA proves difficult.

Figure 11 shows the first 1000 snapshots of a traveling wave with spatial dimensionality
of 256. Let each spatial dimension be indexed by 1 ≤ u ≤ 256. For the spatio-temporal
evolution of the wave holds:

x(u, t) = N (u|µ = (sin(0.01t) + 1) ∗ 100 + 28, σ2 = 10)

The performance of the Fourier-based algorithm in conjunction with PCA is compared to an
instance of the Koopman-based algorithm that employs a transpose-convolutional Neural
Network as a decoder. For the Fourier-based algorithm in conjunction with PCA, a pa-
rameter sweep over the combination of retained PCA modes and the number of frequencies
is performed. In total, 100 combinations are tested and the results are shown in Figure
12. The best performing model incurs an error of approximately 6% with 55 retained PCA
modes and frequencies, respectively. On the other hand, the Koopman-based algorithm in
conjunction with a transpose-convolutional decoder achieves an error smaller than 1% with
just a single frequency.

5.2 Natural data experiments

5.2.1 Energy demand: RE-Europe data set

In the following, we will show that physical systems can be modeled effectively as nonlinear
oscillators. The example at hand is taken from the realm of power systems. Specifically,
the goal of the experiment is to predict the total energy consumption at the distribution
level of a node in the German electrical grid. Predicting future consumption is paramount
for numerous applications such as power quality, grid stability and demand response (Chan
et al., 2012). For this, a one-dimensional time series of past demand is extracted from the
RE-Europe data set (Jensen and Pinson, 2017). Energy demand usually exhibits multiple
scales, i.e. because energy consumption is usually higher during weekdays compared to
weekends, energy consumption often exhibits weekly alongside daily and seasonal patterns.
On top of that, because energy consumption is dependent on hard-to-predict outside factors
such as weather, predicting energy demand into the future requires high robustness to
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Figure 12: The results of a parameter sweep of the Fourier-based algorithm in conjunction
with PCA on modeling a traveling wave in comparison to the Koopman-based
algorithm with a deconvolutional decoder.

structured noise. The data set at hand contains 3 years of data at an hourly rate, therefore
26.280 data points. The first 19.000 data points were used as training, the next 1000 for
testing, and the last 6.280 for evaluation. The evaluation set was in turn divided into four
equal in size consecutive subsets. The performance of the Fourier- as well as Koopman-
based algorithm is compared to various temporal models such LSTM, GRU, Box-Jenkins
models, Clockwork-RNNs, Echo State Networks, Temporal Convolutional Networks and
Fourier Neural Networks.

For LSTMs and GRUs, the standard pytorch implementation is utilized and a parameter
sweep over the number of layers as well as the number of hidden units per layer is performed
totalling 100 different configurations. In order to be able to learn yearly patterns, the Tem-
poral Convolutional Network was instantiated with 13 layers (213 ≈ 365 ∗ 24), a kernel size
of 3 and a hidden dimensionality of 25Bai et al. (2018). For the Box-Jenkins models the
Hyndman-Khandakar (Hyndman et al., 2007) AutoARIMA algorithm implemented in the
R forecasting package is employed which uses a combination of unit root tests, minimiza-
tion of the Akaike Information Criterion (Sakamoto et al., 1986) and Maximum Likelihood
Estimation to obtain an ARIMA model. We compare to the predicted mean. Note that
the hyperparameter space for Box-Jenkins models is very large and computationally too
expensive to sweep. But in addition to the AutoARIMA approach, handcrafted ARIMA
models are created. Because of the long-range dependencies in the data, the best practices of
detrending and differencing followed by an investigation of (partial) auto-correlation func-
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Algorithm Forecast Horizon Patterns

25% 50% 75% 100% D W Y

Koopman Forecast 0.19 0.21 0.19 0.19 X X X
Fourier Forecast 0.31 0.39 0.33 0.3 X X X
LSTM 0.37 0.4 0.42 0.45 X × ×
GRU 0.53 0.55 0.52 0.5 X × ×
Echo State Network 0.67 0.73 0.76 0.73 X × ×
AR(1,12,24,168,4380,8760) 0.75 0.95 1.07 1.13 X X X
CW-RNN (data clocks) 1.1 1.14 1.14 1.15 (X) × ×
CW-RNN 1.05 1.08 1.08 1.09 (X) × ×
AutoARIMA 0.83 1.11 1.18 1.26 × × ×
Temporal Convolutional Nets 0.96 1.69 1.87 2.33 X (X) ×
Fourier Neural Networks 1.1 1.15 1.21 1.21 X × ×

Table 1: Performance in long-term forecasting of distribution level energy consumption as
measured by the Relative Cumulative Error for various algorithms. Note that
long-term predictions are obtained by recursively feeding predictions back into
algorithms where applicable. Furthermore, column Patterns indicates whether
algorithms at hand have successfully extracted Daily, Weekly or Yearly patterns.

tions failed. That is why numerous hand-crafted models imbued with expert knowledge
of the underlying data are probed. The best performing hand-crafted model is a simple
auto-regressive process with lags corresponding to periods and harmonics found in the un-
derlying data. Additionally, the performance of Clockwork-RNNs (Koutnik et al., 2014)
(CW-RNN) is evaluated. CW-RNNs have an internal representation of periodicity and
frequency because subsets of the internal state are updated based on fixed (not learned)
periods of internal clocks. We compare to a CW-RNN whose internal clock is instantiated
according to the power law as described by the authors but also compare to a CW-RNN
whose internal clock ticks according to the periods found in the data. For both models, a
single layer CW-RNN was utilized and a parameter sweep over the number of clocks and
states per clock was performed. Adjusting the internal clock to the underlying data did not
improve the model. Furthermore, we compare to Fourier Neural Networks (Silvescu, 1999;
Gashler and Ashmore, 2016) and Echo State Networks (Jaeger, 2007). Fourier NNs are by
design not temporal models but merely employ cos-activation functions. Temporal depen-
dencies were attempted to be modeled by learning a function that produces the value of
the next time step as a function of the previous 10. For Echo State Networks, the ’easyesn’
package was employed. Table 5.2.1 shows the results.

Figure 13 exemplifies the pitfalls of time-stepping methods for long-term time series
prediction. It shows the frequency content of the prediction of the Koopman- and Fourier-
based algorithm alongside the prediction of the best performing LSTM. In all experiments,
time stepping methods like LSTMs, GRUs or ESNs have two important limitations. First,
because their objective is one-step-ahead prediction and slow frequencies incur little error
in the short-term, they fail to extract slow frequencies from data. Second, the resulting
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Figure 13: Comparison of the best performing model of each contender in frequency domain.
The x-axis shows frequencies with periods of one year, one week, one day and
12 hours. The LSTM fails to extract slow frequencies and seems to be a biased
frequency estimator.

predictions are biased in terms of frequency. When integrating the LSTM (recursively
feeding predictions back into the network), the resulting time series does oscillate but not
with the correct frequency. This behavior is detrimental, especially when the Mean Squared
Error is employed to evaluate the performance. Predicting a constant often incurs a smaller
error then predicting an out-of-phase oscillation.

5.2.2 Fluid flows and Video Frame Prediction

There seems to be a dichotomy in fluid flows. On one hand, there are noise amplifying flows
and on the other hand there are oscillator flows. Because of the inductive bias of the algo-
rithms introduced in this work, we will focus on evaluating the performance of the proposed
algorithms in modeling the behavior of oscillator flows. The performance is compared to
Dynamic Mode Decomposition (DMD) and a variant of DMD designed to be more noise
robust, namely the forward-backward DMD algorithm (Hemati et al., 2017). Modeling fluid
flows is a long-standing standard benchmark for DMD-like algorithms. Indeed, DMD was
first introduced to extract the dynamic behavior in fluids (Kutz et al., 2016). Note that
in the following experiments, the dimensionality of the high dimensional flows was reduced
by Principal Component Analysis and the temporal forecasting was performed using the
Fourier-based algorithm. For each experiment, the first 75% of the data was used for train-
ing whereas the remaining 25% are used for testing (temporal split).

Table 2 shows the performance of the Fourier based algorithm graphically, specifically it
shows the last predicted frame when predicting a Kolmogorov 2D flow, flow around a cylin-
der, flow over a cavity and a video of a fan. The data from the Kolmogorov 2D flow was
taken from the experiments conducted in Tithof et al. (2017). Note that the Kolmogorov
2D flow and the data for the video frame prediction task constitute real measurements and
therefore exhibit a considerable amount of noise, whereas the cylinder and cavity flow data
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Table 2: The last frame as predicted by PCA in conjunction with the Fourier-based al-
gorithm of fluid flows and video frame prediction. For a video that shows the
performance, visit https://www.youtube.com/watch?v=trbXYMqi2Tw.

stems from simulation.

The test set was split into four equal length subsets and Table 3 shows the performance
as measured by the relative cumulative error on each split. For each task, a parameter sweep
over the number of frequencies was performed and the best performing model was selected.
Note that the performance was measured in PCA-space, i.e. in predicting PCA modes. The
results suggest that the Fourier-based algorithm significantly outperforms DMD and FB-
DMD on three out of four tasks. This is mainly due to the fact that under the assumption
of measurement noise, DMD is a biased frequency estimator Hemati et al. (2017). On top
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Algorithm Performance

Kolmogorov 2D Fourier 1.1% 1.4% 1.57% 1.69%
Reynolds no. ≈ 10 DMD 175% 171% 169% 165%

FB DMD inf inf inf inf

Cylinder flow Fourier 0% 0% 0% 0.1%
Reynolds no. 100 DMD 4.44% 4.91% 4.71% 4.69%

FB DMD 4.22% 4.75% 4.68% 4.56%

Flow over cavity Fourier 0.9% 1% 1% 1%
Reynolds no. 7500 DMD 69% 66.7% 64.9% 63.8%

FB DMD 63% 70.6% 77.2% 84%

Video frame Fourier 12.3% 17.2% 22.8% 27.3%
DMD 7% 11% 16% 22%
FB DMD 194% 196% 196% 195%

Prediction Horizon 25% 50% 75% 100%

Table 3: The test set was split into four consecutive subsets of equal length. For every
quantile, the relative cumulative error is reported for the Fourier-based algorithm,
DMD and forward-backward DMD.

of that, DMD based approaches oftentimes lack stability as eigenvalues can lie outside the
unit-circle causing predictions to either blow up to infinity (as was the case of FB-DMD
applied to the Kolmogorov flow) or crash into the origin. The reason why DMD outperforms
the Fourier-based algorithm on the video frame prediction task is simple: one of the PCA
modes does not fit the inductive bias of the algorithm, i.e. it does not oscillate but it
increases over time, therefore impeding the performance of the algorithm.

5.3 Process noise and phase drifts

The question arises whether process noise as opposed to measurement noise can be modeled
with the algorithms introduced here. Human gait is known to be a oscillator that however
exhibits a considerable amount of process noise (Zielińska, 1996). We model process noise
as a phase drift and slightly modify the optimization objective of the Fourier algorithm:

L(A, ~ω, φt, t) = ||xt −AΩ(~ωt+ φ̂t)||22 + |φ̂t − φ̂t−1|

We test the modified algorithm on a data set containing accelerometer readings of a
mobile phone located in test subjects pockets (subject 28, right pocket) (Vajdi et al., 2019)
and compare to the Fourier algorithm. Figure 14 shows the first portion of the predictions
of the Fourier algorithm alongside the phase-corrected modification (Fourier PC). Thus,
small modifications to the algorithms introduced in this work allow to model process noise.
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Figure 14: LocationZ recordings from subject 28. We visually compare the Fourier algo-
rithm and its phase-corrected sibling (Fourier PC) to the true readings.

6. Conclusion

In this work, techniques to fit linear and nonlinear oscillators to data are introduced. When
modeling quasi-periodic systems, the optimization objectives for both problems are highly
non-convex and are therefore not amenable to be solved by gradient descent. The key insight
to solving both optimization problems is to express the objectives in frequency domain
where solutions can be found in a computationally efficient and scalable manner thanks
to the computational properties of the Fast Fourier Transform. Because the optimization
objectives are global, the algorithms introduced in this work allow for long-term forecasting
while mitigating compounding errors. In the following, advantages and disadvantages of
the algorithms are discussed.

6.1 Disadvantages

Strong inductive bias: The algorithms introduced here exhibit a strong inductive bias.
The algorithms will not work well for data that stems from systems which are not
quasi-periodic. However, we have shown empirically that many real life phenomena
such as fluid flows, space weather and energy consumption seem to fulfill this assump-
tion.

Unknown phase problem: This problem was alluded to earlier. For the Koopman algo-
rithm, because analytical solutions for parameters Θ when f is non-linear are usually
unobtainable, swings in either direction from the ‘error plateau’ can be indicative of
a correct choice of frequency.

Conditional Independence of predictions: Given model parameters, pairs of predicted
values are conditionally independent, i.e. p(xt1 , xt2 |Θ, ~ω) = p(xt1 |Θ, ~ω)p(xt2 |Θ, ~ω).
While this property is beneficial for compounding errors and time stepping (see be-
low) this property can also have adverse effects. Consider the scenario where the goal
is to perform a one-step ahead prediction for t+ 1 and all previous data points up to
t are known. If the model error for the prediction of xt is big, the prediction error for

31



Lange, Brunton, Kutz

xt+1 will most likely also be high. Note that in this scenario, we assume we know xt
but even though, we know the true value of xt, incorporating this knowledge, i.e. the
conditional dependence on xt+1, into the model is not trivial.

6.2 Advantages

Strong inductive bias: On the flip side, if the data is known to stem from a quasi-periodic
system, the algorithms introduced here offer a tight fit to the data. The resulting
predictions are guaranteed to be quasi-periodic by construction therefore removing
potential possibilities of failure like e.g. predictions exploding to plus/minus infinity.

Time stepping: Past values are not required to make future state predictions when model
parameters are known. This entails that time consuming time stepping methods are
not required. This is especially useful if the data is high dimensional. This is closely
related to the fact that predictions are conditionally independent.

Compounding errors: Again, because a global optimization criterion (as opposed to one
step-ahead predictions) is solved and because predictions are conditionally indepen-
dent, errors do not compound. However, because of uncertainty caused by noise,
errors will still accumulate over time but in a provably linear manner.

Noise resilience: Because of the strong inductive bias, the algorithms introduced in this
work exhibit very strong resiliency towards noise. As an anecdote, when Jaynes first
published his results on Bayesian Spectral Analysis (Jaynes, 1987), because he was
able to resolve frequencies with much higher accuracy than Nyquist’s theorem would
suggest, his work was compared to ‘squaring a circle’ and initially dismissed.

7. Future Work

In the opinion of the authors, the algorithms presented in this work create new and inter-
esting potential future research paths. The following outlines some ideas for future work.

Input/output systems: In its current inception, the algorithms introduced in this work
assume the underlying systems to be autonomous, i.e. systems that are not driven by
inputs. This severely limits the applicability of the algorithms in more general con-
texts. Koopman theory and DMD have recently been extended to include externally
forced systems (Proctor et al., 2016, 2018). This idea could, in principle, be used to
create new recurrent Neural Network (RNN) architectures that abandon nonlinearities
in between time steps for linear systems in conjunction with a time-invariant nonlin-
earity. It may also lead to improved performance and could potentially overcome
the issues that arise when training current RNNs, like e.g. exploding or vanishing
gradients through time.

Interpretable flows: When modeling the fluid flows little regard to the interpretability
of the resulting model was given. Even though the flow over the cavity could, in
principle, be modeled using a single frequency given an appropriate nonlinearity that
is amenable to rotations, so far, the dimensionality was reduced using Principal Com-
ponent Analysis and forecasting was performed using the Fourier-based algorithm.
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Employing the Koopman algorithm in conjunction with a nonlinear decoder that can
handle rotations could reduce the number of required frequencies and result in higher
noise robustness and interpretability.

Non-parametric Fourier/Koopman: In this work, we showed a direct link between
time series prediction and Bayesian Spectral Analysis (BSA). However, the insights
from BSA are, so far, merely used to derive error bounds. These error bounds can,
in principle, be used to influence predictions. One could conceive a Bayesian prob-
abilistic model that marginalizes the frequencies out, i.e. by performing predictions
by computing the following quantity:

∫
p(xT+h|~ω)p(~ω|x1:T )d~ω. Note that Bayesian

Spectral Analysis provides ways to calculate p(~ω|x1:T ).

Local and global modeling: Consider the following scenario: The goal is to predict a
signal with seasonal patterns given multiple years of training data. Imagine also
that the current year is anomalous which entails that short-term predictions will be
impeded. In its current inception, because global optima are sought, the information
that the system is currently in an anomalous state is hard to incorporate. Ideally,
in addition to one of the global models introduced in this work, there is also a local
model and with increasing prediction horizon, more weight should be given to the
global over the local model. Optimally weighing local and global models seem an
interesting and important future research path.
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