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Abstract

This paper presents an active learning method which reducesthe labeling effort of domain experts
in multi-class classification problems. Active learning isapplied in conjunction with support vector
machines to recognize underwater zooplankton from higher-resolution, new generation SIPPER II
images. Most previous work on active learning with support vector machines only deals with two
class problems. In this paper, we propose an active learningapproach “breaking ties” for multi-
class support vector machines using the one-vs-one approach with a probability approximation.
Experimental results indicate that our approach often requires significantly less labeled images to
reach a given accuracy than the approach of labeling the least certain test example and random
sampling. It can also be applied in batch mode resulting in anaccuracy comparable to labeling one
image at a time and retraining.

Keywords: active learning, support vector machine, plankton recognition, probabilistic output,
multi-class support vector machine

1. Introduction

Recently, an advanced shadow image particle profiling evaluation recorder (SIPPER II) was devel-
oped to produce 3-bit grayscale images at 25µm resolution. SIPPER II uses high-speed digital
line-scan cameras to continuously sample plankton and suspended particlesin the ocean. The high
sampling rate of SIPPER II requires the development of an automated plankton recognition system.
For example, in a previous study using approximately 150,000 SIPPER imagesfrom a two hour
sampling deployment it took over one month to manually classify the images (Remsenet al., 2004).
Also, this automated system is expected to continuously evolve from an existingmodel to a more
accurate model created by training after adding some new labeled images into the training set. Since
it is impossible to manually label all images during the time they are acquired on the ship, active
learning to label themost important imagesseems attractive.
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For plankton recognition, Luo et al. (2004b) developed an automated system to recognize 1-bit
binary SIPPER (SIPPER I) (Samson et al., 2001) images at 50µm resolution. Due to the instability
of contour features, Luo et al. (2004b) designed several image features which did not depend heavily
on contours, and applied a support vector machine (SVM) (Vapnik, 2000) to classify the feature
vectors. The wrapper approach was used to do feature selection effectively reducing the feature
vector from 29 to 15 features. Also, a new way of computing probabilistic output in a multi-class
support vector machine was developed. Tang et al. (forthcoming) proposed several new features for
the SIPPER I images and applied multilevel dominant eigenvector methods to select the best subset
of features. A Gaussian classifier was employed to recognize the image features and validate the
feature selection methods on selected identifiable plankton.

Recently, active learning with SVMs has been developed and applied in a variety of applications
(Tong and Koller, 2000; Schohn and Cohn, 2000; Campbell et al., 2000; Sassano, 2002; Warmuth
et al., 2003; Brinker, 2003; Wang et al., 2003; Onoda et al., 2003; Baram et al., 2004; Luo et al.,
2004a; Nguyen and Smeulders, 2004; Park, 2004; Mitra et al., 2004a,b). The most representative
and relevant work is reviewed in the following.

A similar active learning method for support vector machines (SVMs) in two class problems
was independently developed by several researchers Tong and Koller (2000), Schohn and Cohn
(2000), and Campbell et al. (2000). These approaches, which we term “simple”, caused the new
examples closest to the decision boundary to be labeled. Tong and Koller (2000) used version
spaces to analyze the hypotheses space of SVMs. It was shown that “simple” approximately found
the examples which most dramatically reduced the version space. Compared torandom sampling,
“simple” reduced the required number of labeled images in experiments on textclassification. Mi-
tra et al. (2004a) argued that the greedy search method employed in “simple” is not robust and a
confidence factor was proposed to measure the closeness of the current SVM to the optimal SVM.
A random sampling factor was introduced when the confidence factor waslow. Their proposed
method performed better than “simple” in a set of experiments.

Roy and McCallum (2001) used a probability model to label examples which could maximize
the posterior entropy on the unlabeled data set. We call this method “conf” in this paper. The “conf”
method amounts to improving the current classifier’s classification confidence on the unlabeled data
set. Although it initially was applied with naive bayes classifiers, it could be easily extended to any
classifier with probability outputs. For example, the probability outputs of SVMscan be roughly
approximated by a sigmoid function (Platt, 2000).

Baram et al. (2004) observed that there was no single winner from different active learning
strategies on several data sets. They proposed dynamically selecting from four learning algorithms:
“simple”, “conf”, random sampling and sampling examples furthest from thecurrent labeled data
set. The automatic selection was done by solving a multi-armed bandit problem through online
learning.

Similar selection methods to label several examples at a time for two-class problems were de-
veloped by Brinker (2003) and Park (2004) and named “combined” by Brinker (2003). Based on
the “simple” method, they chose to label examples which are close to the decisionboundary and
have the largest angles to previously selected candidates. A parameterλ was introduced to control
the trade-off between the two criteria. Although Brinker (2003) did not provide a method to set the
optimal value ofλ, “combined” performed better than “simple” in batch mode on several data sets
(when labeling several images at a time).

590



ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

There are two elements of our work which differentiate it from previous approaches. The im-
ages sampled from first generation SIPPER (SIPPER I) did not have clear contours. The low image
quality resulted in many unidentifiable particles, which made it important to create robust image
features and handle unidentifiable particles (Luo et al., 2004b). Higher resolution SIPPER (SIPPER
II) images provide relatively better quality images with clear contours. Also, 3-bit graylevel im-
ages have more texture information than binary images. As a result, handling many unidentifiable
particles is no longer an issue. The higher resolution required new contour and texture features to
improve recognition. Moreover, little previous work in active learning has been done with multiple
class SVMs, which is required in plankton recognition. SVMs solve multiple class problems by
building several two-class SVMs and a new example usually has differentdistances to the decision
boundaries in those two-class SVMs. It is hard to use the “simple” approach because we do not
know which distance to choose. In a very recent paper Mitra et al. (2004b) applied “simple” to each
binary SVM in a multi-class SVM. For a multi-class problem withN binary SVMs,N examples
were labeled at a time. However, this method is far from elegant. They did notsuggest how to
choose which example was best for all binary SVMs. It is not unusual that an “informative” exam-
ple for one binary SVM is useless for other binary SVMs. The “combined”method suffers from the
same problem. It is not clear which distance to minimize and which angle to maximize. The “conf”
approach seems to be a natural solution for multi-class problems as long as there is a probability
estimation for the output from a multi-class SVM. However, applying the “conf” approach involves
estimating the decision boundary after adding each unlabeled example into the training data in each
round. Supposem is the number of unlabeled examples andc is the number of classes, “conf”
needs to train a SVMcm times to decide which example to label next. Although there are several
heuristics to speedup such a procedure, it remains quite computationally expensive.

A new image feature set was developed Luo et al. (2004a) which added some contour features
and texture features into a previous feature set (Luo et al., 2004b). A least certainty active learning
approach was proposed and evaluated for multiple class SVMs. In this paper we expand the work
reported by Luo et al. (2004a) and propose a new active learning strategy for one-versus-one multi-
class SVMs. After developing a probability model for multiple class SVMs, we label the example
which has the smallest difference in probability between its most likely class andsecond most
likely class. We compare our approach with other methods like random samplingand least certainty
for the plankton recognition problem. To obtain the same classification accuracy, we show our
approach required many fewer labeled examples than random sampling. Italso outperformed the
least certainty approach in terms of needed examples to reach a given accuracy level. Our proposed
method can run in batch mode, labeling up to 20 images at a time, with an accuracy comparable
to labeling one image at a time and retraining. In a simulation where plankton images come as a
stream, active learning resulted in higher classification accuracy than random sampling.

This paper is organized as follows. Section 2 introduces our active learning approach for support
vector machines and our approach to assigning a classification probability for a multi-class support
vector machine. Experimental results are presented in Section 3. Finally we summarize our work
and propose some ideas for future work in Section 4.
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2. Active Learning Approach with Multi-Class Support Vector Machines

A soft margin support vector machine was used in this work. A probability model has been added to
the support vector machine to help evaluate multi-class decision problems. Theprobability model
was used in the development of an active learning model.

2.1 Support Vector Machines

Support vector machines (SVMs) (Vapnik, 2000) have received increasing attention recently and
have been shown to have very good accuracy for pattern recognition,text classification, etc. (Cris-
tianini and Shawe-Taylor, 2000).

SVMs first map the data into a higher dimension feature space withφ(x), then use a hyperplane
in that feature space to separate the data into two classes. In the feature mapping stage, the kernel
k(x,y) = 〈φ(x) · φ(y)〉 is used to avoid explicit inner product calculation in the high-dimensional
feature space. C-SVM (Vapnik, 2000), a typical example of soft marginSVMs, is described in the
following.

Given m examples:x1,x2, ...,xm with class labelyi ∈{-1,1}.
C-SVM:

minimize(
1
2
〈w,w〉+C

m

∑
i=1

ξi) (1)

subject to:yi(〈w,φ(xi)〉+b) ≥ 1−ξi , (2)

wherew is normal to the class separating hyperplane,C is a scalar value that controls the trade off
between the empirical risk and the margin (2

|w| ) , ξi is the slack variable to handle non-separable
examples,b is a scalar value, andC,ξi > 0.

With Lagrange multipliers, the constraint optimization problem in Eq. (1) and (2)can be solved.
The decision function is

f (x) = ∑
i

αiyik(xi ,x)+b,

whereαi is a Lagrange multiplier. Bothαi andb are scalar values.
The Karush-Kuhn-Tucker condition of the optimal solution to Eq. (1) and (2) is

αi(yi(〈w,φ(xi)〉+b)−1+ξi) = 0.

αi is nonzero only when

yi(〈w,φ(xi)〉+b) = 1−ξi . (3)

In this case thexi contributes to the decision function and is called a support vector (SV).
We applied the one-vs-one approach to extend SVMs to multiple class problems. All possible

groups of 2 classes were used in building binary SVMs. In theN class case, we will buildN(N−1)
2

binary SVMs. We chose the one-vs-one method because it showed superior accuracy in several
experiments (see Hsu and Lin, 2002) over other multi-class methods–one-vs-all (Vapnik, 2000) and
the decision directed acyclic graph (Platt et al., 2000).
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2.2 Assigning Probability Values in Support Vector Machines

A probability associated with a classifier is often very useful and it provides an indication of how
much to believe the classification result. The classification probability can be used to develop an
active learning strategy for a multi-class SVM.

In Platt (2000) the sigmoid function was introduced as a probability model to fitP(y = 1| f )
directly, wheref is the decision function of the binary SVM. The parametric model is shown in
Eq. (4).

P(y = 1| f ) =
1

1+exp(A f +B)
, (4)

whereA andB are scalar values, which are fit by maximum likelihood estimation.
A method to estimate classification probability for a series of pairwise classifierswas proposed

by Hastie and Tibshirani (1998). Given the estimated probability for each binary classifier(Ppq), the
probability of being class p in a binary classifier (class p vs. class q), theyminimized the average
Kullback-Leibler distance betweenPpq and P(p)

P(p)+P(q) , whereP(p) andP(q) were the probabilities
of a given example belonging to classes p and q, respectively. An iteratedalgorithm was given to
search forP(p). Following this line of the work, Wu et al. (2004) developed two new criteria for
the goodness of the estimated probabilities and applied their method to multi-class SVMs. Their
approach has three steps to get the probability estimation. First, a grid-search is used to determine
the best SVM parameters (C, g) based on a k-fold cross validation accuracy, whereC is the regular-
ization constant in Eq. (1) andg is the kernel parameter in the kernel functionk. Second, with the
optimal (C, g) found in the first step,A andB were fit individually for each binary SVM. Third, a
constrained quadratic programming method was used to optimize the criteria they proposed.

However, this approach is time consuming. The second step involves estimatingN(N − 1)
parameters for SVMs using a one-vs-one approach. The third step requires quadratic programming
to solveN variables for each example. On a data set withm examples, this step needs to runm
times. Another issue was that the SVM parameters (C, g) were estimated based on accuracy and
thus might not be good for probability estimation in the following two steps.

In real-time plankton recognition, the probability computation needs to be fast since retraining
the probability model will be frequently needed as more plankton images are acquired on a cruise.

We (Luo et al., 2004b) developed a practical approximation method to computethe probabil-
ity value, while avoiding expensive parameter fitting. By normalizing the real valued outputf (x)
from each binary SVM, the probability model assumes the sameA for all binary SVMs. Also, our
approach can optimize SVM parameters (C, g) together with the probability parameterA simulta-
neously using a log-likelihood criterion.

1. We assumeP(y = 1| f = 0) = P(y = −1| f = 0) = 0.5. This means that a point lying on the
decision boundary will have a 0.5 probability of belonging to each class. This allows the
elimination of B.

2. Since each binary SVM has a different margin, a crucial criterion in assigning the probability,
it is not fair to assign a probability without considering the margin. Therefore, the decision
function f (x) is normalized by its margin in each binary SVM. The probability model of
SVMs is shown in (5) and (6).Ppq represents the probability output for the binary SVM on
classp vs. classq, classp is +1 and classq is -1. We added the negative sign beforeA to
ensureA is positive:
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Ppq(y = 1| f ) =
1

1+exp(−A f
‖w‖ )

, (5)

Ppq(y = −1| f ) = 1−Ppq(y = 1| f ) = Pqp(y = 1| f ). (6)

3. AssumingPpq,q = 1,2, ... are independent, the final probability for classp is computed as
follows:

P(p) =
q6=p

∏
q

Ppq(y = 1| f ). (7)

NormalizeP(p) to make∑pP(p) = 1.

4. Output ˆy = arg maxpP(p) as the prediction.

(A, C, g) are determined through numeric search based on the cost functionL from (8), whereti
is the true class label ofxi :

L = −∑
i

logP(ti). (8)

Although it is arguable whetherPpq andPpk are really independent sincePpq andPpk are both
estimated using data from classp, the one-vs-one approach does not suffer much from any depen-
dence. Consider differentiating examples from three classes (p, q and k). If a classifier is built for
classes p and q with another built for p and k, there is clearly a relationship but one class is different.
So, following this type of argument the classifiers will have a weak dependence. Knowing there is
only a weak dependence betweenPpq andPpk, Eq. (7) provides a reasonable approximation.

Grid-search can be used to find the optimal (C, g, A) on the initial small labeled data set. It has
the potential to be run in parallel to significantly reduce the computation time. If wewant to update
the probability model after adding more labeled images, we can fixC andg, and only search forA.
As a result, it is very fast to update the probability model. Moreover, we directly optimize (C, g, A)
together by minimizing the negative log-likelihood function in Eq. (8). Normalizingf by its margin
and assuming the sameA for each binary SVM trades off some flexibility to gain a regularization
effect and speedup since it restricts the otherwise big (N(N+1)) parameter space. Experiments for
this probability model were done on SIPPER images by Luo et al. (2004b).

2.3 Active Learning for Multi-Class SVMs

The least certainty active learning approach for SVMs (Luo et al., 2004a), which makes use of
the estimated probability described in Section 2.2, provides good performance in multi-class SVM
classification. The idea for it can be traced back to Lewis and Gale (1994), who used “uncertainty
sampling” to label the examples with the least classification certainty. We call the least certainty
approach for SVMs by Luo et al. (2004a) “LC”. In this paper, we propose another active learning
approach–“breaking ties” (BT). The idea of “BT” is to improve the confidence of the multi-class
classification. Recall in a multi-class SVM with probability outputs, we assign the class label of x to
argmaxpP(p). SupposeP(a) is the largest andP(b) is the second largest probability for example x,
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where a, b are class labels. “BT” tries to improve theP(a)−P(b). Intuitively, improving the value
of P(a)−P(b) amounts to breaking the tie betweenP(a) andP(b), thus improving the classification
confidence. The difference between “LC” and “BT” is that “LC” tries toimprove the value ofP(a)
rather thanP(a)−P(b).

The two algorithms work as follows:

1. Start with an initial training set and an unclassified set of images.

2. A multi-class support vector machine is built using the current training set.

3. Compute the probabilistic outputs of the classification results for each image on the unclas-
sified set. Suppose the class with highest probability isa and the class with second highest
probability isb. Record the value ofP(a) andP(b) for each unclassified image.

4. If LC: Remove the image(s) from the unclassified set that have the smallest classification
confidence, obtain the correct label(s) from human experts and add thelabeled image(s) to
the current training set.

5. If BT: Remove the image(s) from the unclassified set that have the smallest difference in
probabilities between them (P(a)−P(b)) for the two highest probability classes, obtain the
correct label from human experts and add the labeled image(s) to the current training set.

6. Go to 2.

3. Experiments

The experimental data set consisted of 8440 SIPPER II images selected from the five most abundant
types of plankton: 1688 images from each type of plankton. There were 1000 images (200 each
type of plankton) randomly selected as the validation set used in the active learning experiments.
The remaining 7440 image were used as the training set and to simulate the unlabeled image pool.
Figures 1(a) to 1(e) are typical examples of the images produced by SIPPER II for the five most
abundant plankton classes.

Given this new higher resolution data, 49 image features were developed (Luo et al., 2004b;
Luo, forthcoming) consisting of: moment invariants, weighted moment invariants, granulometric
features, Fourier descriptor, texture features and several domain specific features.

The Libsvm (Chang and Lin, 2001) support vector machine software was modified to produce
probabilistic outputs. Rifkin and Klautau (2004) argued the one-vs-all approach was essentially as
good as other voting algorithms, however, without postprocessing binarySVMs, we observed the
one-vs-one approach provided better accuracy and required less training time than the one-vs-all
approach in our previous experiments (Luo et al., 2004b). Also, when updating models with several
more labeled examples in N class problems, the one-vs-one approach only requires the update of N
binary SVMs built with a portion of the data, while the one-vs-all approach requires the update of
N binary SVMs built with all the labeled data. Therefore, the one-vs-one approach was used in our
experiments. In all experiments the Gaussian radial basis function (RBF) was used as the kernel:
k(x,y) = exp(−g‖x−y‖2) whereg is a scalar value.

The optimal feature subset was determined beforehand by our wrapperbased feature selection
method (Luo et al., 2004b) after the best (g, C) parameters were found by 5-fold cross validation.
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(a) Calanoid copepod

(b) Larvacean

(c) Marine snow

(d) Oithona copepod

(e) Trichodesmium

Figure 1: Five most abundant types of plankton from SIPPER II
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We started off with all 49 image features and systematically eliminated features using best first
search and later beam search. Five-fold cross validation on 80% of thetraining data was used to
select the best feature subset for each feature set size. Then the best feature subsets were tested on
the remaining 20% of the training set. This feature selection method is describedin detail by Luo
et al. (2004b). As a result, 17 out of 49 features were selected. In allthe active learning experiments,
we used the best 17 feature subset instead of the 49 feature set.

In the kind of problem embodied by plankton recognition, there is only a small amount of
initial training data available. Therefore, the best parameter set for the probability model would be
estimated from a small data set. The parameters (g, C, A) were optimized by performing a grid-
search across a randomly selected 1000 images consisting of 200 images per class. We believe the
parameters were obtained from a relatively small set of data and were reasonably stable. A five-fold
cross validation was used to evaluate each combination of parameters basedon the loss functionL
from (8). The parameters (g, C, A) were varied with a certain interval in the grid space. Since the
parameters are independent, the grid-search ran very fast in a parallel implementation. The values
of g = 0.04096,C = 16, andA =100 were found to produce the best results.

We began with N randomly selected images per class as the initial training set. A series of
retrainings were done for the two active learning methods and with random sampling. Each exper-
iment was performed 30 times and the average statistics were recorded. Instead of exhausting all
of the unlabeled data set, we only labeled 750 more images in each experiment because exhausting
all unlabeled data was not a fair criterion for comparing between different sample selection algo-
rithms. For example, active learning labeled the most “informative” new examples, which were
available in the beginning of the experiment. As more “informative” examples were labeled, only
“garbage” examples were left unlabeled in the late stages of the experiment.The term “garbage”
examples means the examples correctly classified by the current classifier and far from the decision
boundary. Therefore, “garbage” examples have no contribution to improving the current classifier.
In contrast to active learning, random sampling labeled average “informative” examples throughout
the whole experiment. It surely would catch up with active learning in the later stages when active
learning only had “garbage” examples to label. Moreover, when the plankton recognition system is
employed on a cruise, the unlabeled images come like a stream. The nature of such an application
prevents one from exhausting all the unlabeled images because the time required to label them is
prohibitive. Therefore, it made more sense to compare different algorithms in the early stage of the
experiment when the unlabeled data set is not exhausted. To get an idea of the upper limit on the
classification accuracy, we built a SVM using all 7400 training images. Its prediction accuracy was
88.3% on the 1000 held-out data set.

Several variations of the procedure described above were performed. We varied both the number
of initial labeled images per class (IIPC) and the number of images selected for labeling at each
retraining step (IPR).

3.1 Experiments with IPR=1, IIPC Varied

Figures 2–5 show the experimental results of active learning methods usingdifferent IIPC values. A
paired-t test was used to test if there exists a statistically significantly difference. We used standard
error for the error bars in the figures because the denominator of t testis in the form of standard
error.
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As shown in Figure 2, with only 10 images per class in the initial training sets we started off with
rather poor accuracy (64.6%). At p=0.05, “BT” is statistically significantlymore accurate than “LC”
and both active learning methods are statistically significantly more accurate than random sampling.
At 81% accuracy, random selection required approximately 1.7 times the number of newly labeled
images compared to “BT”.

Active learning is designed to label the most “informative” new images, thus improving a newly
trained classifier. In SVMs, the decision boundary is represented by support vectors (SVs). In
general, an effective active learning approach finds more SVs than random sampling. Figure 2 also
shows the average number of SVs versus the number of images added into the initial training set
from the 30 runs. Active learning resulted in many more SVs than random sampling. Also, the
slope of both active learning curves is about 0.9, which means that 90% of the labeled images turn
out to be SVs. Our active learning approach efficiently captured support vectors. We note that
a high slope of the support vector curve is not a sufficient condition foreffective active learning
because there are many SVs to be added into the current model and different SVs lead to different
improvements. Ideally, a very effective active learning method discoversthe SVs which provide the
most improvement to the current model. In contrast, an active learning method, which always finds
the SVs misclassified by the current classifier and far from its decision boundary, may result in poor
performance because such SVs are very likely to be noise. Therefore, we cannot compare active
learning methods based only on slight differences in the support vector curves.

With 50 IIPC in the initial training set as shown in Figure 3, the initial accuracy was 77%.
Compared to 10 IIPC, the accuracy for both active learning approaches improved faster than random
sampling. At the 81% accuracy level, random sampling required about 2.5 times and 1.7 times the
number of images compared with using “BT” and “LC”, respectively. The slopes of support vector
curves for active learning are higher than those of random sampling. Also, “BT” again outperformed
“LC”, however, it is not as obvious as with IIPC=10.

In Figures 4 and 5, the initial accuracy was greater than 80% when using 100 and 200 initial
images from each class, and active learning was very effective. Random sampling required more
than 3 times the number of images to reach the same level of accuracy as both active learning
approaches. The two active learning methods effectively capture many more SVs than random
sampling. Also, our newly proposed active learning approach, “BT”, requires less images to reach
a given accuracy than “LC” after adding 450 labeled images. Before adding 450 labeled images,
however, “BT” performs similarly to “LC”.

It seems reasonable that the accuracy of the initial classifier affects the performance of active
learning and random sampling. Active learning greedily chooses the most “informative” examples
based on the previous model. So an un-informed model tends to be provide less important examples
for labeling. Hence, their addition may not help to improve the classifier accuracy much. While
random sampling provides the classifier with average “informative” examples whatever the initial
classifier accuracy. Therefore, if the initial classifier helps active learning to choose examples more
informative than average (random sampling), active learning will result ina more accurate classifier
with fewer labeled examples. The better the initial classifier, the more labeling effort is saved.

When comparing the two active learning methods, “BT” outperformed “LC” under all four
starting conditions. However, the difference in accuracy between them was insignificant as the
initial classifier became more accurate. The justification is that an accurate initial classifier allows
for less error reduction using active learning. “BT” improved the accuracy by more than 20% when
IIPC=10 while it boosted the accuracy by less than 4% when IIPC=200. Therefore, as the amount
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Figure 2: Comparison of active learning and random sampling in terms of accuracy and number of
support vectors: initial training images per class are 10, one new labeled image added at
a time. The error bars represent the standard errors.
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IIPC=50,   IPR=1
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Figure 3: Comparison of active learning and random sampling in terms of accuracy and number of
support vectors: initial training images per class are 50, one new labeled image added at
a time. The error bars represent the standard error.
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Figure 4: Comparison of active learning and random sampling in terms of accuracy and number of
support vectors: initial training images per class are 100, one new labeledimage added at
a time. The error bars represent the standard error.
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Figure 5: Comparison of active learning and random sampling in terms of accuracy and number of
support vectors: initial training images per class are 200, one new labeledimage added at
a time. The error bars represent the standard error.
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of available accuracy improvement was small, the difference in accuracy between the two active
learning methods became insignificant.

3.2 Varying the IPR

One might expect that, in actual practice, more than one image would typically belabeled and added
to the training set for retraining. It is convenient for an expert to label several images instead of one
at a time. Also, given the total number of newly labeled images isU , it is approximatelyk times
faster if we labelk images at a time because it only requires a new model be learnedU

k times. Al-
though an incremental SVM training algorithm was proposed by Cauwenberghs and Poggio (2000)
to reduce the retraining time, model updating by labeling one image at a time was still quite time
consuming, especially when many images are to be labeled. Therefore, we expected active learning
to be effective even when adding several labeled images at a time.

The active learning method “BT” was good for adding only one “informative” example at a
time, however there was no guarantee that adding several examples at a timewould still favor “BT”.
The reason is that adding one “informative” example will update the model, which in turn changes
the criterion for the next “informative” example. Therefore, the most “informative” example set is
different from simply grouping several most “informative” examples together. However, such an
optimal example set is very hard to compute. Therefore, we expect grouping several most “infor-
mative” examples together is a reasonable approximation of the optimal example set, or at least is
superior to randomly selecting several examples.

Figures 6 to 9 show the experimental results using “BT” by varying IPR foreach IIPC. In all the
experiments, the IPR was varied from 1 to 50. We only show the error barsfor random sampling
because adding error bars to “BT” will make the graph too busy. We againused a paired-t test to
compare “BT” with random sampling. Somewhat surprisingly, classification accuracy with large
IPRs is almost as good as with small IPRs although a very large IPR (IPR=50) resulted in slightly
less accurate classifiers than a small IPR in many cases. In all situations, even a large IPR (up
to 50) enabled “BT” to result in a statistically significantly more accurate classifier than random
sampling at p=0.05. These results indicate that our active learning approach “BT” can run in batch
mode, labeling tens of examples at a time, to achieve speedup with at most a little compromise in
accuracy.

3.3 Other Experiments

We experimented with “BT” in a streaming data simulation. In this experiment, unlabeled data was
treated as a stream with only a block of unlabeled data available at a given time.The algorithm
selectively labeled data within this block. Then all unlabeled data in the block was discarded and
a new data block was pulled from the stream. In our experiment, we started off with 10 labeled
images randomly selected from each class (IIPC=10). The size of data block was 100. From each
data block, 10 images were selected to label at a time (IPR=10). Figure 10 shows a comparison
of “BT” with random sampling in the stream setup. We also show “BT” without streaming for
comparison. All the curves were averaged over 30 runs in which the order of the data blocks was
randomized.

“BT” in a streaming simulation performed very well. At p=0.05, it was more accurate than
random sampling and was as accurate as “BT” in a non-streaming setup. This experiment indicates
that “BT” works well in “data streaming” situations.
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Figure 6: Comparison of active learning and random sampling in terms of accuracy with differ-
ent IPR: initial training images per class are 10. Standard error bars areon the random
sampling curve.
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Figure 7: Comparison of active learning and random sampling in terms of accuracy with differ-
ent IPR: initial training images per class are 50. Standard error bars areon the random
sampling curve.
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Figure 8: Comparison of active learning and random sampling in terms of accuracy with different
IPR: initial training images per class are 100. Standard error bars are onthe random
sampling curve.
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Figure 9: Comparison of active learning and random sampling in terms of accuracy with different
IPR: initial training images per class are 200. Standard error bars are onthe random
sampling curve.

607



LUO, KRAMER, GOLDGOF, HALL , SAMSON, REMSEN AND HOPKINS

IIPC=10,  IPR=10


85.3%


82.2%


63.7%


60%


65%


70%


75%


80%


85%


90%


0
 100
 200
 300
 400
 500
 600
 700


Number of new images


A
c
c
u

ra
c
y



BT (non-streaming)


BT (streaming)


Random


Figure 10: Comparison of active learning and random sampling in a data streaming simulation:
initial training images per class are 10, 10 newly labeled images added at a time. The
error bars represent the standard error.
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In the previous experiments, all the classes have equal priors. We investigated how “BT” per-
formed when the priors for each type of plankton were different. It should be noted that under
the unequal prior condition, our probabilistic interpretation is different from traditional probability
model in two aspects. First, the sigmoid function directly estimatesP(y| f ) rather than computing
the probability density functionP( f |y). Therefore, we can not simply apply Bayes rule to include
the priors. Second, our probability model is built on top of a trained SVM. When the class dis-
tribution becomes skewed, the decision function of a SVM will vary accordingly. As a result, our
probability model (built on the SVM) implicitly incorporates the unequal prior information. In our
experiment, we selected three types of plankton with unequal priors. The ratio among the three
types of plankton was 1:2:4. Both the unlabeled pool and the held-out data set had 200 larvacean,
400 oithona and 800 copepod images. We started off with a total of 30 initial labeled images ran-
domly taken from the above distribution and labeled one image at a time per retraining (IPR=1).
The initial 30 labeled image set consisted of 4 larvacean, 9 oithona, and 17 copepod images. The
initial labeled images used unequal priors because they would typically be randomly sampled from
the unlabeled pool and therefore would likely have the same class distribution.

Figure 11 shows the experimental results for the unequal prior experiment. When the distri-
bution of different plankton was skewed, “BT” still outperformed random sampling. “BT” was
statistically significantly more accurate than random sampling at p=0.05.

4. Discussion and Conclusions

This paper presents an active learning approach to reduce domain experts’ labeling efforts in rec-
ognizing plankton from higher-resolution, new generation SIPPER II images. It can be applied
to any data set where the examples will be labeled over time and one wants to usethe learned
model as early as possible. The “breaking ties” active learning method wasproposed and applied
to a multi-class SVM using the one-vs-one approach on newly developed, image features extracted
from gray-scale SIPPER images. The experimental results showed that our proposed active learn-
ing approach successfully reduced the number of labeled images required to reach a given accuracy
level when compared to random sampling. It also outperforms the least certainty approach previ-
ously proposed by us. The new approach was also effective in batch mode, allowing for labeling up
to 20 images at a time with classification accuracy which was similar to that achievedwhen labeling
one image at a time and retraining. This results in a significant speedup in the training phase. In
the following, we address and discuss several active learning in SVM issues which deserve further
exploration.

One critique of active learning is the overhead related to searching for thenext candidate to
label. Random sampling just selects an example to label at random, but activelearning needs to
evaluate every unlabeled example. This overhead becomes significant when the unlabeled data set
is very large. A simple solution would be random subset evaluation. Each time one searches for
the next candidate example to label, instead of evaluating the entire unlabeled data set, can only
evaluate a randomly drawn subset. We indicate without proof here that forIPR=1, we needed to
sample 59 examples, which provided 95% probability confidence that the best candidate from the
59 example subset is superior to 95% data from the total unlabeled set (seeScḧolkopf and Smola,
2002, chap. 6.5). Also, the experiment with a “data streaming” simulation indicated “BT” worked
well when the evaluation and active learning was performed on a small subset of the data.
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Figure 11: Unequal prior experiment. The ratio among the three classes are 1:2:4. The error bars
represent the standard errors.
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Another important issue is the change of optimal kernel parameters. We canfind the optimal
kernel parameters from the initial labeled data set. As more labeled data are added, however, such
kernel parameters may no longer be optimal. Unless we can afford a held-out, labeled data set, it is
difficult to tune the kernel parameters online. The key reason is we do nothave a good method to
evaluate different kernel parameters as active learning proceeds. The standard methods like cross-
validation and leave-one-out tend to fail because active learning chooses biased data samples. Such
failures were observed and discussed by Baram et al. (2004). An important future direction is to
find a good online performance evaluation method for active learning. Otherwise, one could take
it as one of the biggest bottlenecks for using a SVM as the classifier in active learning because
a SVM depends heavily on good kernel parameters. An effort towardssolving this problem was
proposed by Baram et al. (2004) who used the classification entropy maximization (CEM) criterion
to evaluate the performance of different active learners. Their work shows CEM can help select the
best active learner on several data sets.

An important thing omitted in most active learning+SVMs literature is to try active learning
in batch mode. Unless labeling an example is extremely expensive, it is alwaysconvenient and
practical to use active learning in batch mode, namely labeling several examples at a time and then
retraining. As indicated in this paper, the best candidate set to label might befound in a different way
from a single best candidate point. The “combined” approach only worksfor two-class problems. A
criterion for the best set of data to label in multi-class SVMs needs to be addressed in future active
learning work. At the very least, existing active learning methods need to beshown to work well in
batch mode. Fortunately, our proposed active learning method did work well in batch mode without
requiring a new criterion for selecting a set of data to label.

In this paper, we do not deal with a significant amount of label noise, which means one assigns
incorrect class labels to the examples. In general, active learning tries to minimize the redundancy
of labeled examples to reach a given accuracy. Therefore, noisy labels will hurt its performance.
In our case, we only selectively label a few images and we expect small labeling noise due to the
relatively small labeling effort. Please see Kearns (1998) for more detailabout handling noisy labels
in statistical queries.
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