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Abstract

This paper presents an active learning method which redhedabeling effort of domain experts
in multi-class classification problems. Active learningyzplied in conjunction with support vector
machines to recognize underwater zooplankton from higbswtution, new generation SIPPER Il
images. Most previous work on active learning with supperdter machines only deals with two
class problems. In this paper, we propose an active leaappgoach “breaking ties” for multi-
class support vector machines using the one-vs-one agpseidic a probability approximation.
Experimental results indicate that our approach ofteniregsignificantly less labeled images to
reach a given accuracy than the approach of labeling thé deaisin test example and random
sampling. It can also be applied in batch mode resulting iacuracy comparable to labeling one
image at a time and retraining.

Keywords: active learning, support vector machine, plankton redagmi probabilistic output,
multi-class support vector machine

1. Introduction

Recently, an advanced shadow image particle profiling evaluation red@RPER II) was devel-
oped to produce 3-bit grayscale images atu@b resolution. SIPPER Il uses high-speed digital
line-scan cameras to continuously sample plankton and suspended partiblescean. The high
sampling rate of SIPPER Il requires the development of an automated piaekiagnition system.
For example, in a previous study using approximately 150,000 SIPPER irfrages two hour
sampling deployment it took over one month to manually classify the images (Retaer2004).
Also, this automated system is expected to continuously evolve from an existidgl to a more
accurate model created by training after adding some new labeled image®itrining set. Since

it is impossible to manually label all images during the time they are acquired onitheastive
learning to label thenost important imageseems attractive.

(©2005 Tong Luo, Kurt Kramer, Dmitry B. Goldgof, Lawrence O. H&tott Samson, Andrew Remsen and Thomas Hopkins.



Luo, KRAMER, GOLDGOF, HALL, SAMSON, REMSEN AND HOPKINS

For plankton recognition, Luo et al. (2004b) developed an automateehsys recognize 1-bit
binary SIPPER (SIPPER I) (Samson et al., 2001) images pirbesolution. Due to the instability
of contour features, Luo et al. (2004b) designed several imageésatinich did not depend heavily
on contours, and applied a support vector machine (SVM) (Vapnik)2t0classify the feature
vectors. The wrapper approach was used to do feature selectiativefie reducing the feature
vector from 29 to 15 features. Also, a new way of computing probabilistipudun a multi-class
support vector machine was developed. Tang et al. (forthcomingbpeaiseveral new features for
the SIPPER | images and applied multilevel dominant eigenvector methods toteelbest subset
of features. A Gaussian classifier was employed to recognize the imagesfeand validate the
feature selection methods on selected identifiable plankton.

Recently, active learning with SVMs has been developed and applied ireayaf applications
(Tong and Koller, 2000; Schohn and Cohn, 2000; Campbell et al.,;Z8sano, 2002; Warmuth
et al., 2003; Brinker, 2003; Wang et al., 2003; Onoda et al., 2003 Bat al., 2004; Luo et al.,
2004a; Nguyen and Smeulders, 2004; Park, 2004; Mitra et al., 2Q04hbk most representative
and relevant work is reviewed in the following.

A similar active learning method for support vector machines (SVMs) in twssgoblems
was independently developed by several researchers Tong and @), Schohn and Cohn
(2000), and Campbell et al. (2000). These approaches, which we‘stmple”, caused the new
examples closest to the decision boundary to be labeled. Tong and Kdgd)(Rsed version
spaces to analyze the hypotheses space of SVMs. It was shownithale'sapproximately found
the examples which most dramatically reduced the version space. Compaaadioon sampling,
“simple” reduced the required number of labeled images in experiments ocldsgification. Mi-
tra et al. (2004a) argued that the greedy search method employed in “simpl&t robust and a
confidence factor was proposed to measure the closeness of thet Gvid to the optimal SVM.
A random sampling factor was introduced when the confidence factotomasTheir proposed
method performed better than “simple” in a set of experiments.

Roy and McCallum (2001) used a probability model to label examples whighd coaximize
the posterior entropy on the unlabeled data set. We call this method “conf$ipaper. The “conf”
method amounts to improving the current classifier’s classification congdanthe unlabeled data
set. Although it initially was applied with naive bayes classifiers, it could lséyeaextended to any
classifier with probability outputs. For example, the probability outputs of S¢dsbe roughly
approximated by a sigmoid function (Platt, 2000).

Baram et al. (2004) observed that there was no single winner frorereliff active learning
strategies on several data sets. They proposed dynamically selectmpfrolearning algorithms:
“simple”, “conf”, random sampling and sampling examples furthest fronctireent labeled data
set. The automatic selection was done by solving a multi-armed bandit probleagthonline
learning.

Similar selection methods to label several examples at a time for two-classmpsobiere de-
veloped by Brinker (2003) and Park (2004) and named “combined”rinkBr (2003). Based on
the “simple” method, they chose to label examples which are close to the delsmiodary and
have the largest angles to previously selected candidates. A paranveasrintroduced to control
the trade-off between the two criteria. Although Brinker (2003) did notjole a method to set the
optimal value ofA, “combined” performed better than “simple” in batch mode on several d&ga se
(when labeling several images at a time).

590



ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

There are two elements of our work which differentiate it from previoyz@gches. The im-
ages sampled from first generation SIPPER (SIPPER 1) did not haaeadatours. The low image
quality resulted in many unidentifiable particles, which made it important to crebtestrimage
features and handle unidentifiable particles (Luo et al., 2004b). Higkelution SIPPER (SIPPER
II) images provide relatively better quality images with clear contours. Alduf 8raylevel im-
ages have more texture information than binary images. As a result, handlimgun@entifiable
particles is no longer an issue. The higher resolution required new ccamduexture features to
improve recognition. Moreover, little previous work in active learning heenbdone with multiple
class SVMs, which is required in plankton recognition. SVMs solve multiplesgisblems by
building several two-class SVMs and a new example usually has diffdigances to the decision
boundaries in those two-class SVMs. It is hard to use the “simple” approacause we do not
know which distance to choose. In a very recent paper Mitra et al42pplied “simple” to each
binary SVM in a multi-class SVM. For a multi-class problem withbinary SVMs,N examples
were labeled at a time. However, this method is far from elegant. They diduggfest how to
choose which example was best for all binary SVMs. It is not unusaakth “informative” exam-
ple for one binary SVM is useless for other binary SVMs. The “combimedthod suffers from the
same problem. It is not clear which distance to minimize and which angle to maxinhizé'conf”
approach seems to be a natural solution for multi-class problems as longassthegorobability
estimation for the output from a multi-class SVM. However, applying the “tapproach involves
estimating the decision boundary after adding each unlabeled example intaitiegtidata in each
round. Supposen is the number of unlabeled examples ani the number of classes, “conf”
needs to train a SVMmtimes to decide which example to label next. Although there are several
heuristics to speedup such a procedure, it remains quite computationadiystxg

A new image feature set was developed Luo et al. (2004a) which addeel contour features
and texture features into a previous feature set (Luo et al., 2004basfdertainty active learning
approach was proposed and evaluated for multiple class SVMs. In thés papexpand the work
reported by Luo et al. (2004a) and propose a new active learnirtggréor one-versus-one multi-
class SVMs. After developing a probability model for multiple class SVMs, Wwellthe example
which has the smallest difference in probability between its most likely classeoahd most
likely class. We compare our approach with other methods like random saraplingast certainty
for the plankton recognition problem. To obtain the same classification agcuwwe show our
approach required many fewer labeled examples than random samplaigo hutperformed the
least certainty approach in terms of needed examples to reach a givea@ckevel. Our proposed
method can run in batch mode, labeling up to 20 images at a time, with an accoraparable
to labeling one image at a time and retraining. In a simulation where plankton imagesas a
stream, active learning resulted in higher classification accuracy thdamasampling.

This paper is organized as follows. Section 2 introduces our activahgeapproach for support
vector machines and our approach to assigning a classification probadmilgyrulti-class support
vector machine. Experimental results are presented in Section 3. Finallymmearize our work
and propose some ideas for future work in Section 4.
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2. Active Learning Approach with Multi-Class Support Vector Machines

A soft margin support vector machine was used in this work. A probabilityehoals been added to
the support vector machine to help evaluate multi-class decision problemsrdibeility model
was used in the development of an active learning model.

2.1 Support Vector Machines

Support vector machines (SVMs) (Vapnik, 2000) have receivec@sing attention recently and
have been shown to have very good accuracy for pattern recogréidrglassification, etc. (Cris-
tianini and Shawe-Taylor, 2000).

SVMs first map the data into a higher dimension feature spacegith then use a hyperplane
in that feature space to separate the data into two classes. In the featymiaegrstpge, the kernel
k(x,y) = (0(X) - @(y)) is used to avoid explicit inner product calculation in the high-dimensional
feature space. C-SVM (Vapnik, 2000), a typical example of soft meBY§iMs, is described in the
following.

Given m examplesxy, xg, ..., Xm With class label; €{-1,1}.

C-SVM:
L 1 m
m|n|m|ze(§(vv,w> +Ci;Ei) (1)
subject toy; ({w, @(x)) +b) > 1-&;, 2

wherew is normal to the class separating hyperplabés a scalar value that controls the trade off
between the empirical risk and the margﬁl , &; is the slack variable to handle non-separable

examplesb is a scalar value, and, &; > 0.
With Lagrange multipliers, the constraint optimization problem in Eq. (1) andg@)e solved.
The decision function is

Fx) = aiyik(x,x) +b,

whereq; is a Lagrange multiplier. Both; andb are scalar values.
The Karush-Kuhn-Tucker condition of the optimal solution to Eq. (1) @&)ds(

ai(Yi((w, (%)) +b) —1+4¢&;) =0.

a; is nonzero only when
Yi({w, 0(xi)) +b) = 1—&;. ®3)

In this case the; contributes to the decision function and is called a support vector (SV).

We applied the one-vs-one approach to extend SVMs to multiple class probddinpessible
groups of 2 classes were used in building binary SVMs. InNt&ass case, we will builw
binary SVMs. We chose the one-vs-one method because it showedoswgesuracy in several
experiments (see Hsu and Lin, 2002) over other multi-class methodsseslé{Vapnik, 2000) and
the decision directed acyclic graph (Platt et al., 2000).
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2.2 Assigning Probability Valuesin Support Vector Machines

A probability associated with a classifier is often very useful and it prevateindication of how
much to believe the classification result. The classification probability candzbtasdevelop an
active learning strategy for a multi-class SVM.

In Platt (2000) the sigmoid function was introduced as a probability model &(yit= 1|f)
directly, wheref is the decision function of the binary SVM. The parametric model is shown in

Eq. (4).
1

" 1+expgAf+B)’

whereA andB are scalar values, which are fit by maximum likelihood estimation.

A method to estimate classification probability for a series of pairwise classifeesproposed
by Hastie and Tibshirani (1998). Given the estimated probability for emaryoclassifieryg), the
probability of being class p in a binary classifier (class p vs. class q),ntieynized the average
Kullback-Leibler distance betwed?y and%, whereP(p) andP(q) were the probabilities
of a given example belonging to classes p and g, respectively. An itealifedthm was given to
search forP(p). Following this line of the work, Wu et al. (2004) developed two new critesia f
the goodness of the estimated probabilities and applied their method to multi-clbds SVeir
approach has three steps to get the probability estimation. First, a grchsgaised to determine
the best SVM parameter€,(g) based on a k-fold cross validation accuracy, wi@ig the regular-
ization constant in Eq. (1) arglis the kernel parameter in the kernel functionSecond, with the
optimal C, g) found in the first stepA andB were fit individually for each binary SVM. Third, a
constrained quadratic programming method was used to optimize the criteriatipoged.

However, this approach is time consuming. The second step involves estirhitihg 1)
parameters for SVMs using a one-vs-one approach. The third stepegquadratic programming
to solveN variables for each example. On a data set witexamples, this step needs to mm
times. Another issue was that the SVM paramet€rggf were estimated based on accuracy and
thus might not be good for probability estimation in the following two steps.

In real-time plankton recognition, the probability computation needs to beifes getraining
the probability model will be frequently needed as more plankton images quired on a cruise.

We (Luo et al., 2004b) developed a practical approximation method to cortipugobabil-
ity value, while avoiding expensive parameter fitting. By normalizing the rakaied outputf (x)
from each binary SVM, the probability model assumes the sarioe all binary SVMs. Also, our
approach can optimize SVM paramete@s @) together with the probability parametarsimulta-
neously using a log-likelihood criterion.

P(y=1f)

(4)

1. We assum®(y =1|f =0) = P(y= —1|f = 0) = 0.5. This means that a point lying on the
decision boundary will have a 0.5 probability of belonging to each classs dlltows the
elimination of B.

2. Since each binary SVM has a different margin, a crucial criteriondigagg the probability,
it is not fair to assign a probability without considering the margin. Theegftire decision
function f(x) is normalized by its margin in each binary SVM. The probability model of
SVMs is shown in (5) and (6)Ppq represents the probability output for the binary SVM on
classp vs. clasgy, classpis +1 and clasg) is -1. We added the negative sign befdér¢o
ensureA is positive:
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1
Pogly=1/f) = ———————, 5
bq(y = 1[f) 1+exqﬂTA\|f) (5)
Pog(y = —1[f) = 1= Ppg(y = 1|f) = Pyp(y = 1| ). (6)
3. AssumingPpq, g = 1,2,... are independent, the final probability for clgsss computed as
follows:
a#p
P(p) =[] Pealy = 1/1). (7)
q

NormalizeP(p) to makey ,P(p) = 1.
4. Outputy’= arg maxP(p) as the prediction.

(A, C, g) are determined through numeric search based on the cost fuhdtiom (8), wherg;
is the true class label of:

L= —ZIogP(ti). (8)

Although it is arguable whethd?,q and Py are really independent sinégq and Py are both
estimated using data from clapsthe one-vs-one approach does not suffer much from any depen-
dence. Consider differentiating examples from three classes (p, ¢)affdakclassifier is built for
classes p and g with another built for p and k, there is clearly a relationshgmk class is different.
So, following this type of argument the classifiers will have a weak deper@ddKnowing there is
only a weak dependence betweg andPy, Eq. (7) provides a reasonable approximation.

Grid-search can be used to find the optin@ld, A) on the initial small labeled data set. It has
the potential to be run in parallel to significantly reduce the computation time. \Wawm to update
the probability model after adding more labeled images, we cdb éirdg, and only search foh.

As aresult, it is very fast to update the probability model. Moreover, wetljreptimize C, g, A)
together by minimizing the negative log-likelihood function in Eq. (8). NormaliZiryy its margin
and assuming the samiefor each binary SVM trades off some flexibility to gain a regularization
effect and speedup since it restricts the otherwise MidN(+ 1)) parameter space. Experiments for
this probability model were done on SIPPER images by Luo et al. (2004b).

2.3 Active Learning for Multi-Class SVMs

The least certainty active learning approach for SVMs (Luo et al., 004&hich makes use of
the estimated probability described in Section 2.2, provides good perfoenranuaulti-class SVM
classification. The idea for it can be traced back to Lewis and Gale (18&4)used “uncertainty
sampling” to label the examples with the least classification certainty. We calldkedertainty
approach for SVMs by Luo et al. (2004a) “LC". In this paper, wegmse another active learning
approach—"breaking ties” (BT). The idea of “BT” is to improve the coafide of the multi-class
classification. Recall in a multi-class SVM with probability outputs, we assignléss tabel of x to
argmaxP(p). Supposé>(a) is the largest an(b) is the second largest probability for example X,
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where a, b are class labels. “BT” tries to improve B{@) — P(b). Intuitively, improving the value
of P(a) — P(b) amounts to breaking the tie betwelefa) andP(b), thus improving the classification
confidence. The difference between “LC” and “BT” is that “LC” triestaprove the value oP(a)
rather tharP(a) — P(b).

The two algorithms work as follows:

1. Start with an initial training set and an unclassified set of images.
2. A multi-class support vector machine is built using the current training set.

3. Compute the probabilistic outputs of the classification results for each inmathes ainclas-
sified set. Suppose the class with highest probabiliyasmd the class with second highest
probability isb. Record the value d?(a) andP(b) for each unclassified image.

4. If LC: Remove the image(s) from the unclassified set that have the stnaHssification
confidence, obtain the correct label(s) from human experts and addbled image(s) to
the current training set.

5. If BT: Remove the image(s) from the unclassified set that have the shiffesence in
probabilities between theniP(a) — P(b)) for the two highest probability classes, obtain the
correct label from human experts and add the labeled image(s) to tleattraining set.

6. Goto 2.

3. Experiments

The experimental data set consisted of 8440 SIPPER Il images selentethi five most abundant
types of plankton: 1688 images from each type of plankton. There wi9@ images (200 each
type of plankton) randomly selected as the validation set used in the actminlg@xperiments.
The remaining 7440 image were used as the training set and to simulate thdedhlatzge pool.
Figures 1(a) to 1(e) are typical examples of the images produced byEBIRRor the five most
abundant plankton classes.

Given this new higher resolution data, 49 image features were develbpede( al., 2004b;
Luo, forthcoming) consisting of: moment invariants, weighted moment invatigmanulometric
features, Fourier descriptor, texture features and several donegifisfieatures.

The Libsvm (Chang and Lin, 2001) support vector machine softwasemadified to produce
probabilistic outputs. Rifkin and Klautau (2004) argued the one-vs-glicgeh was essentially as
good as other voting algorithms, however, without postprocessing b#\ks, we observed the
one-vs-one approach provided better accuracy and required d@Eggrtime than the one-vs-all
approach in our previous experiments (Luo et al., 2004b). Also, whdating models with several
more labeled examples in N class problems, the one-vs-one approaclkeaquies the update of N
binary SVMs built with a portion of the data, while the one-vs-all approacjuires the update of
N binary SVMs built with all the labeled data. Therefore, the one-vs-ppecach was used in our
experiments. In all experiments the Gaussian radial basis function (R&used as the kernel:
k(x,y) = exp(—g||x—Y||?) whereg is a scalar value.

The optimal feature subset was determined beforehand by our wrbpped feature selection
method (Luo et al., 2004b) after the begt C) parameters were found by 5-fold cross validation.
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(e) Trichodesmium

Figure 1: Five most abundant types of plankton from SIPPER Il
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We started off with all 49 image features and systematically eliminated features hesst first
search and later beam search. Five-fold cross validation on 80% tfaiheng data was used to
select the best feature subset for each feature set size. Thersttediare subsets were tested on
the remaining 20% of the training set. This feature selection method is desaridethil by Luo

et al. (2004b). As aresult, 17 out of 49 features were selected. thresdictive learning experiments,
we used the best 17 feature subset instead of the 49 feature set.

In the kind of problem embodied by plankton recognition, there is only a smaduat of
initial training data available. Therefore, the best parameter set for ttabpility model would be
estimated from a small data set. The parameigr€(A) were optimized by performing a grid-
search across a randomly selected 1000 images consisting of 200 imagkspeWe believe the
parameters were obtained from a relatively small set of data and weanaday stable. A five-fold
cross validation was used to evaluate each combination of parametersobadedoss functioh
from (8). The parameterg,(C, A) were varied with a certain interval in the grid space. Since the
parameters are independent, the grid-search ran very fast in a pangliementation. The values
of g=0.04096C = 16, andA =100 were found to produce the best results.

We began with N randomly selected images per class as the initial training setiied et
retrainings were done for the two active learning methods and with randomlimg. Each exper-
iment was performed 30 times and the average statistics were recordeghding exhausting all
of the unlabeled data set, we only labeled 750 more images in each expergnansé exhausting
all unlabeled data was not a fair criterion for comparing between diffex@mple selection algo-
rithms. For example, active learning labeled the most “informative” new elesnphich were
available in the beginning of the experiment. As more “informative” examples Vadeled, only
“garbage” examples were left unlabeled in the late stages of the experifiemterm “garbage”
examples means the examples correctly classified by the current classifiar &rom the decision
boundary. Therefore, “garbage” examples have no contribution tcowimgy the current classifier.
In contrast to active learning, random sampling labeled average “infmefi@xamples throughout
the whole experiment. It surely would catch up with active learning in the ltages when active
learning only had “garbage” examples to label. Moreover, when the f@amkcognition system is
employed on a cruise, the unlabeled images come like a stream. The natuch ahsapplication
prevents one from exhausting all the unlabeled images because the tinreddquabel them is
prohibitive. Therefore, it made more sense to compare different algwith the early stage of the
experiment when the unlabeled data set is not exhausted. To get arf itheaupper limit on the
classification accuracy, we built a SVM using all 7400 training images. #édigtion accuracy was
88.3% on the 1000 held-out data set.

Several variations of the procedure described above were pedoklfveevaried both the number
of initial labeled images per class (IIPC) and the number of images selectéab@ding at each
retraining step (IPR).

3.1 Experimentswith IPR=1, [IPC Varied

Figures 2-5 show the experimental results of active learning methodsdiergnt IIPC values. A
paired-t test was used to test if there exists a statistically significantly differaVe used standard
error for the error bars in the figures because the denominator ofistesthe form of standard
error.
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As shown in Figure 2, with only 10 images per class in the initial training sets wedaff with
rather poor accuracy (64.6%). At p=0.05, “BT"” is statistically significanityre accurate than “LC”
and both active learning methods are statistically significantly more accurateatidom sampling.
At 81% accuracy, random selection required approximately 1.7 times theamwohbewly labeled
images compared to “BT".

Active learning is designed to label the most “informative” new images, thusowimg a newly
trained classifier. In SVMs, the decision boundary is represented fiyyosuvectors (SVs). In
general, an effective active learning approach finds more SVs thaemasampling. Figure 2 also
shows the average number of SVs versus the number of images addeceimdi#h training set
from the 30 runs. Active learning resulted in many more SVs than randamplsey. Also, the
slope of both active learning curves is abol,vhich means that 90% of the labeled images turn
out to be SVs. Our active learning approach efficiently captured suppotors. We note that
a high slope of the support vector curve is not a sufficient conditiorefiective active learning
because there are many SVs to be added into the current model andrdiff&fs lead to different
improvements. Ideally, a very effective active learning method discalierSVs which provide the
most improvement to the current model. In contrast, an active learning metharh always finds
the SVs misclassified by the current classifier and far from its decisiondawy, may result in poor
performance because such SVs are very likely to be noise. Therefereannot compare active
learning methods based only on slight differences in the support vaatex

With 50 IIPC in the initial training set as shown in Figure 3, the initial accuraeg \7%.
Compared to 10 IIPC, the accuracy for both active learning appreacieoved faster than random
sampling. At the 81% accuracy level, random sampling required about 2.5 &intk1.7 times the
number of images compared with using “BT” and “LC”, respectively. Theedoof support vector
curves for active learning are higher than those of random sampling, 83" again outperformed
“LC”, however, it is not as obvious as with [IPC=10.

In Figures 4 and 5, the initial accuracy was greater than 80% when u8ih@rid 200 initial
images from each class, and active learning was very effective. dRasdmpling required more
than 3 times the number of images to reach the same level of accuracy as thihiesrning
approaches. The two active learning methods effectively capture margy 8\ than random
sampling. Also, our newly proposed active learning approach, “Bd¢uires less images to reach
a given accuracy than “LC” after adding 450 labeled images. Beform@dib0 labeled images,
however, “BT” performs similarly to “LC".

It seems reasonable that the accuracy of the initial classifier affectetf@mpance of active
learning and random sampling. Active learning greedily chooses the mndsirative” examples
based on the previous model. So an un-informed model tends to be prasdmfgortant examples
for labeling. Hence, their addition may not help to improve the classifier acgunuch. While
random sampling provides the classifier with average “informative” examplatever the initial
classifier accuracy. Therefore, if the initial classifier helps activaniegrto choose examples more
informative than average (random sampling), active learning will resalhitore accurate classifier
with fewer labeled examples. The better the initial classifier, the more labeforg isfsaved.

When comparing the two active learning methods, “BT” outperformed “L@der all four
starting conditions. However, the difference in accuracy between thasningignificant as the
initial classifier became more accurate. The justification is that an accuratédtasaifier allows
for less error reduction using active learning. “BT” improved the aacyiby more than 20% when
IIPC=10 while it boosted the accuracy by less than 4% when [IPC=206refore, as the amount
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Figure 2: Comparison of active learning and random sampling in terms ofamcand number of
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Figure 3: Comparison of active learning and random sampling in terms ofaxycand number of
support vectors: initial training images per class are 50, one new labelee iadaled at
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of available accuracy improvement was small, the difference in accueteyebn the two active
learning methods became insignificant.

3.2 VaryingthelPR

One might expect that, in actual practice, more than one image would typicaélpéled and added
to the training set for retraining. It is convenient for an expert to labetsal images instead of one
at a time. Also, given the total number of newly labeled imagés,ig is approximatelyk times
faster if we labek images at a time because it only requires a new model be Ie%rrnimies. Al-
though an incremental SVM training algorithm was proposed by Cauwembargl Poggio (2000)
to reduce the retraining time, model updating by labeling one image at a time wasiséltiqme
consuming, especially when many images are to be labeled. Thereforepeaed active learning
to be effective even when adding several labeled images at a time.

The active learning method “BT” was good for adding only one “infornedtigxample at a
time, however there was no guarantee that adding several examples atatitdestill favor “BT".
The reason is that adding one “informative” example will update the modétjvit turn changes
the criterion for the next “informative” example. Therefore, the mostdinfative” example set is
different from simply grouping several most “informative” examples tbge However, such an
optimal example set is very hard to compute. Therefore, we expectigmapveral most “infor-
mative” examples together is a reasonable approximation of the optimal exashpbe at least is
superior to randomly selecting several examples.

Figures 6 to 9 show the experimental results using “BT” by varying IPR&ah IIPC. In all the
experiments, the IPR was varied from 1 to 50. We only show the errorftbarandom sampling
because adding error bars to “BT” will make the graph too busy. We agatid a paired-t test to
compare “BT” with random sampling. Somewhat surprisingly, classificatcmuracy with large
IPRs is almost as good as with small IPRs although a very large IPR (IDRe&ilted in slightly
less accurate classifiers than a small IPR in many cases. In all situatie@msadarge IPR (up
to 50) enabled “BT” to result in a statistically significantly more accurate clasglian random
sampling at p=0.05. These results indicate that our active learning appg®&” can run in batch
mode, labeling tens of examples at a time, to achieve speedup with at most a littleootis®in
accuracy.

3.3 Other Experiments

We experimented with “BT” in a streaming data simulation. In this experiment, ueldlbata was
treated as a stream with only a block of unlabeled data available at a givenTimeealgorithm
selectively labeled data within this block. Then all unlabeled data in the bloskdvgaarded and
a new data block was pulled from the stream. In our experiment, we staftedttoflO labeled
images randomly selected from each class (IIPC=10). The size of datawés 100. From each
data block, 10 images were selected to label at a time (IPR=10). Figureot® shcomparison
of “BT” with random sampling in the stream setup. We also show “BT” withdutaming for
comparison. All the curves were averaged over 30 runs in which the ofdiee data blocks was
randomized.

“BT” in a streaming simulation performed very well. At p=0.05, it was more aa®uthan
random sampling and was as accurate as “BT” in a non-streaming setigsgexXperiment indicates
that “BT” works well in “data streaming” situations.
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In the previous experiments, all the classes have equal priors. Wetigated how “BT” per-
formed when the priors for each type of plankton were different. lukhbe noted that under
the unequal prior condition, our probabilistic interpretation is differemnftraditional probability
model in two aspects. First, the sigmoid function directly estimBtgsf) rather than computing
the probability density functioR(f|y). Therefore, we can not simply apply Bayes rule to include
the priors. Second, our probability model is built on top of a trained SVMekivine class dis-
tribution becomes skewed, the decision function of a SVM will vary accgidims a result, our
probability model (built on the SVM) implicitly incorporates the unequal priooinfation. In our
experiment, we selected three types of plankton with unequal priors. @leeamong the three
types of plankton was 1:2:4. Both the unlabeled pool and the held-out elatad 200 larvacean,
400 oithona and 800 copepod images. We started off with a total of 30 initieleldlimages ran-
domly taken from the above distribution and labeled one image at a time per iregréinR=1).
The initial 30 labeled image set consisted of 4 larvacean, 9 oithona, angpbEpad images. The
initial labeled images used unequal priors because they would typicallyndermdy sampled from
the unlabeled pool and therefore would likely have the same class distribution

Figure 11 shows the experimental results for the unequal prior expdrifiénen the distri-
bution of different plankton was skewed, “BT” still outperformed ramdsampling. “BT” was
statistically significantly more accurate than random sampling at p=0.05.

4. Discussion and Conclusions

This paper presents an active learning approach to reduce domaintsélgdeeling efforts in rec-
ognizing plankton from higher-resolution, new generation SIPPER Il @sadt can be applied
to any data set where the examples will be labeled over time and one wants tieeusarned
model as early as possible. The “breaking ties” active learning methogrwpssed and applied
to a multi-class SVM using the one-vs-one approach on newly developegk ifeatures extracted
from gray-scale SIPPER images. The experimental results showeduthatoposed active learn-
ing approach successfully reduced the number of labeled images ktureach a given accuracy
level when compared to random sampling. It also outperforms the ledaintgrapproach previ-
ously proposed by us. The new approach was also effective in batd, mibowing for labeling up
to 20 images at a time with classification accuracy which was similar to that achigedlabeling
one image at a time and retraining. This results in a significant speedup initiegrghase. In
the following, we address and discuss several active learning in S\issshich deserve further
exploration.

One critique of active learning is the overhead related to searching forektecandidate to
label. Random sampling just selects an example to label at random, but laetiierg needs to
evaluate every unlabeled example. This overhead becomes significantéunlabeled data set
is very large. A simple solution would be random subset evaluation. Each timsearches for
the next candidate example to label, instead of evaluating the entire unlalaeteded, can only
evaluate a randomly drawn subset. We indicate without proof here th#®Rorl, we needed to
sample 59 examples, which provided 95% probability confidence that thedredidate from the
59 example subset is superior to 95% data from the total unlabeled s&dd@kopf and Smola,
2002, chap. 6.5). Also, the experiment with a “data streaming” simulation indi¢BE worked
well when the evaluation and active learning was performed on a smatitsoiithe data.
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Another important issue is the change of optimal kernel parameters. Windatie optimal
kernel parameters from the initial labeled data set. As more labeled datddme, daowever, such
kernel parameters may no longer be optimal. Unless we can afford a tigliddzeled data set, it is
difficult to tune the kernel parameters online. The key reason is we doaveta good method to
evaluate different kernel parameters as active learning proceddsstandard methods like cross-
validation and leave-one-out tend to fail because active learning ebdiased data samples. Such
failures were observed and discussed by Baram et al. (2004). Arrtampduture direction is to
find a good online performance evaluation method for active learning.r@te one could take
it as one of the biggest bottlenecks for using a SVM as the classifier iredetiyning because
a SVM depends heavily on good kernel parameters. An effort towsoliéng this problem was
proposed by Baram et al. (2004) who used the classification entropymzation (CEM) criterion
to evaluate the performance of different active learners. Their wasws CEM can help select the
best active learner on several data sets.

An important thing omitted in most active learning+SVMs literature is to try activenieg
in batch mode. Unless labeling an example is extremely expensive, it is abwaysnient and
practical to use active learning in batch mode, namely labeling several ee@atf@ time and then
retraining. As indicated in this paper, the best candidate set to label miédurhein a different way
from a single best candidate point. The “combined” approach only worke/o-class problems. A
criterion for the best set of data to label in multi-class SVMs needs to bessklt in future active
learning work. At the very least, existing active learning methods needdbdnen to work well in
batch mode. Fortunately, our proposed active learning method did wdirkavieatch mode without
requiring a new criterion for selecting a set of data to label.

In this paper, we do not deal with a significant amount of label noise,iwhigans one assigns
incorrect class labels to the examples. In general, active learning tries itnizgrthe redundancy
of labeled examples to reach a given accuracy. Therefore, noislg faflehurt its performance.
In our case, we only selectively label a few images and we expect smalingmoise due to the
relatively small labeling effort. Please see Kearns (1998) for more ddtailt handling noisy labels
in statistical queries.
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