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We incorporate statistical confidence intervals in bothtladti-armed bandit and the reinforcement
learning problems. In the bandit problem we show that givanms, it suffices to pull the arms a
total of O ((n/€2)log(1/8)) times to find are-optimal arm with probability of at least-13. This
bound matches the lower bound of Mannor and Tsitsiklis (2@@4to constants. We also devise
action elimination procedures in reinforcement learnitgpathms. We describe a framework
that is based on learning the confidence interval aroundahe\function or the Q-function and
eliminating actions that are not optimal (with high probiyj. We provide a model-based and a
model-free variants of the elimination method. We furtherivk stopping conditions guaranteeing
that the learned policy is approximately optimal with higlolpability. Simulations demonstrate a

considerable speedup and added robustnessayeredy Q-learning.

1. Introduction

Two of the most studied problems in control, decision theory, and learningkimawn environment
are the multi-armed bandit (MAB) and reinforcement learning (RL). In tlEipgp we consider
both models under the probably approximately correct (PAC) settingstady several important
questions arising in this model. The first question is when can an agent stoyinig and start
exploiting using the knowledge it obtained. The second question is whidbgfrizads to minimal
learning time. Since the multi-armed bandit setup is simpler, we start by introdit@ng later

describe the reinforcement learning problem.

The Multi-armed bandit problem is one of the classical problems in decisiomtlaed control.
There is a number of alternative arms, each with a stochastic reward ptodosbility distribution is
initially unknown. We try these arms in some order, which may depend on tleseg of rewards

x. Preliminary and partial results from this work appeared as extendshats in COLT 2002 and ICML 2003.
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that have been observed so far. A common objective in this context is ta faoticy for choosing
the next arm to be tried, under which the sum of the expected rewards@sr@ose as possible
to the ideal reward, i.e., the expected reward that would be obtained if wetavery the “best”
arm at all times. One of the attractive features of the multi-armed bandit jpnablthat despite its
simplicity, it encompasses many important decision theoretic issues, such teesdiaff between
exploration and exploitation.

The multi-armed bandit problem has been widely studied in a variety of sellygsproblem
was first considered in the 50’s in the seminal work of Robbins (1952)drdves strategies that
asymptotically attain an average reward that converges in the limit to the reivénd best arm.
The multi-armed bandit problem was later studied in discounted, BayesiakpWi@n, expected
reward, and adversarial setups. (See Berry and Fristedt, 1985 réwiew of the classical results
on the multi-armed bandit problem.) Most of the research so far has coegitfe expected regret,
and devised strategies for minimizing it. The seminal work of Lai and Robbh®85) provides tight
bounds as a function of the Kullback-Leibler divergence between the eeward distribution, and
a logarithmic growth with the number of steps. The bounds of Lai and Rob2&5) were shown
to be efficient, in the sense that the convergence rates are optimal. Téesain multi-armed
bandit problem was considered in Auer et al. (1995, 2002), wherastshown that the expected
regret grows proportionally to the square root of the number of steps.

We consider the classical multi-armed bandit problem, but rather than loekithg expected
regret, we develop PAC style bounds. The agent’s goal is to find, with fighability, a near
optimal arm, namely, with probability at least-D output are-optimal arm. This naturally abstracts
the case where the agent needs to choose one specific arm, and ihisgliyéimited exploration
initially. Our main complexity criterion, in addition to correctness, is the humbetegfsstaken
by the algorithm, which can be viewed as pure exploration steps. This is tnasbto most of
the results for the multi-armed bandit problem, where the main aim is to maximize thetedp
cumulative reward while both exploring and exploiting. Therefore, methdushaalance between
exploration and exploitation such as softmax, @angreedy are not comparable to our methods.
Following our initial conference publication, a lower bound on the numbstagfs needed to obtain
a PAC solution was developed in Mannor and Tsitsiklis (2004); it matchespgperibound we
develop in this paper.

The MAB problem models a situation where the environment is static and the sais®d has
to be made repeatedly. In many cases of practical interest, the model sbprddent a situation
where the state of the system changes with time. This is encompassed in thevMadision
process model (MDP), that has been the subject of intensive résgace the 1950’s. When the
model is known, and learning is not required, there are several sthnghods for calculating the
optimal policy - linear programming, value iteration, policy iteration, etc.; seaaie(1994) for a
review. When the model is not known a-priorigarningscheme is needed. RL has emerged in the
recent decade as unified discipline for adaptive control of dynamicaemaents (e.g., Sutton and
Barto, 1998, Bertsekas and Tsitsiklis, 1996). A common problem with margldritithms is a slow
convergence rate, even for relatively small problems. For examplsidmrthe popular Q-learning
algorithm (Watkins, 1989) which is essentially an asynchronous stoclagagtioximation algorithm
(Bertsekas and Tsitsiklis, 1996). Generic convergence rate boondsochastic approximation
(e.g., Borkar and Meyn, 2000) or specific rates for Q-learning ¢searns and Singh, 1998, Even-
Dar and Mansour, 2003) are somewhat disappointing. However, therigeconvergence rate is
shown there to be almost tight for several particularly bad scenarios. quistion that we ask
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is: When is enough information gathered? When can the learning agdatedadth reasonable
confidence that the policy discovered is optimal, or at least approximatéipal To summarize
the differences, we are not concerned in the generic convergatec@vhich must be slow), but we
are rather interested in supplying rates which will be adjusted to the spedifie phrameters and
as a result are much better for certain problems.

The problem of obtaining stopping conditions for learning in MDPs is a foredd@al problem
in RL. As opposed to supervised learning problems where typically a datagieen to the learner
who has to commit to a classifier (or regressor in regression problem), iheRlecision maker can
continue its interaction with the environment and obtain additional samplestdjy@rsy rules that
are currently employed in practice are based on ad-hoc rules, and ndaly Ipeemature stopping
or to overly long trajectories.

When an action in a certain state can be determinettdelong to the optimal policy in an
MDP, it can be discarded and disregarded in both planning and learfiinig. idea, commonly
known as action elimination (AE), was proposed by MacQueen (1966) indghtxt of planning
when the MDP parameters are known. In the planning case AE servesitpasgs: reduce the size
of the action sets to be searched at every iteration; identify optimal policien thlere is a unique
optimal policy. (In value iteration this is the only way to reach optimal policy ratih@ne-optimal
policy.) AE procedures are standard practice in solving large practi€#$and are considered
state-of-the-art; see Puterman (1994) for more details. We considertA&l@arningcontext when
the model is not known a-priori.

In many applications the computational power is available but sampling of th@ement is
expensive. By eliminating sub-optimal actions early in the learning protlesgsptal amount of
sampling is reduced, leading to spending less time on estimating the parametebsaptisnal
actions. The main motivation for applying AE in RL is reducing the amount of ssmmeeded
from the environment. In addition to that, AE in RL enjoys the same advantagesMDPs -
convergence rate speedup and possibility to find an optimal policy (ratee-tbptimal).

Overview of the paper

After defining the settings in Section 2, we consider the MAB problem in Se8tidle start from

a naive algorithm for the MAB problem, and present two improved algoritirhs.first algorithm

in the bandit settingsSuccessive Eliminatigmas the potential to exhibit an improved behavior in
cases where the differences between the expected rewards of thel @gptimzand sub-optimal arms
are much larger thaa The second algorithmyliedian Elimination achieves a better dependence
on the number of arms. Namely, the total number of arm tria¥ is/s?log(1/d)), which improves
the naive bound by a factor of logand matches the lower bounds given in Mannor and Tsitsiklis
(2004).

In Section 4 we consider AE in RL. The underlying idea is to maintain uppelosvet estimates
of the value (or Q) function. When the expected upper estimate of the i@tarcertain action falls
below the expected lower estimate of another action, the obviously infetionas eliminated. We
suggest both, a model-based and a Q-learning style AE algorithms. Taeamplower bounds are
based on a large deviations inequality, so that when an action is eliminatedpttéptimal with
high probability.

Stopping conditions that are based on generic convergence ratesb@asih Even-Dar and
Mansour, 2003) are overly conservative. We suggest a stopping asedlon the difference be-
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tween the upper and lower bounds of the value (or Q) function. We shawiftthe difference is
small, then the greedy policy with respect to the lower estimate is almost optimal.

In Section 5 we present the results of several experiments with AE in tdjgms as well as
in non-trivial problems. Significant speedup with negligible computationatlmead is observed as
compared t@-greedy Q-learning.

2. Model and Preliminaries

In this section we define the models considered in this paper. We start feoiMAIB model in
Section 2.1. We then describe the MDP model in Section 2.2. While both modelehistudied
we prefer to recapitulate them in the PAC setup, to avoid confusion. We fireadgtl Hoeffding’s
inequality which is a central tool in this work in Section 2.3.

2.1 Multi-Armed Bandit

The model is comprised of a set of ardsvith n = |A|. When sampling arm € A a reward which

is a random variablR(a) is received. We assume that the reward is binary, i.e., for everpari

the rewardR(a) € {0, 1} (all the results apply without change if the reward is bound€@,ifj and

in general as long as the reward is bounded with appropriate modificatiDeg)pte the arms by
ai,---,a, andp; = E[R(&)]. For simplicity of notations we enumerate the arms according to their
expected rewarg; > p2 > ... > pn.

An arm with the highest expected reward is called biest arm and denoted by*, and its
expected reward* is theoptimal reward An arm whose expected reward is strictly less thgn
the expected reward of the best arm, is callesba-best armAn arma is called are-optimal arm
if its expected reward is at mosfrom the optimal reward, i.e., R(a)] > r* —¢.

An algorithm for the MAB problem, at each time stepsamples an arm; and receives a
rewardr; (distributed according t&(a;)). When making its selection the algorithm may depend on
the history (i.e., the actions and rewards) up to timel. Eventually the algorithm must commit to
a single arm and select it.

Next we define the desired properties of an algorithm formally.

Definition 1 An algorithm is a(g, 8)-PAC algorithm for the multi armed bandit wisample com-
plexity T, if it outputs are-optimal arm, &, with probability at leastL — 8, when it terminates, and
the number of time steps the algorithm performs until it terminates is bound&d b

Remark 2 The MAB algorithm may terminate befofe steps passed. The sample complexity we
consider is the complexity of theorst trajectory. The expected sample complexity (where the
expectation is taken with respect to both the model and the algorithm) was e@mtsid Mannor
and Tsitsiklis (2004). The expected sample complexity behavelike+log(1/8))/€?), which

is different than the complexity we prove below in Theorem 10. We note teatutining time of
the algorithm from Mannor and Tsitsiklis (2004) is not bounded in the wearse.

2.2 Markov Decision Processes

We define an MDP as follows:
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Definition 3 A Markov Decision process (MDP) M is a 4-tufl8 A, P R), where S is a set of the
states, A is a set of actions? Pis the transition probability from state s to staterhen performing
action ac A in state s, and B, a) is the reward received when performing action a in state s.

A strategy for an MDP assigns, at each timdor each states a probability for performing
actiona € A, given a historyr_1 = {sg,a1,r1,...,S-1,&-1,—1} Which includes the states, actions
and rewards observed until tinhe- 1. While executing a strategy we perform at time action
& in states and observe a rewanq (distributed according t&(s,a;)), and the next statg
distributed according t®&' . We combine the sequence of rewards into a single value called the
return. Our goal is to maximize the return. In this work we focus ondiseounted returnwhich
has a parametgre (0,1), and the discounted return of policyis V™ = S oytry, wherer; is the
reward observed at time We also consider thénite horizonreturn, V™" = s o for a given
horizonH.

We assume thd(s, a) is non-negative and bounded Byay, i.€., for everys,a: 0<R(sa) <
Rmax This implies that the discounted return is boundedvhyx = Rmax/(1—Y); for the finite
horizon the return is bounded bRnhax. We define a value function for each stateinder policy
, asV'(s) = EM[3{,riy], where the expectation is over a run of polictarting at stats. We
further denote the state-action value function as using aetiorstates and then followingtas:

Q"(s,a) = R(s,a) + VZ PegVT(S).

Similarly, we define the value functions for the finite horizon model.

Let 1 be an optimal policy which maximizes the return from any start state. For diszbu
return criterion, there exists such a policy which is deterministic and statiqsagy e.g., Put-
erman, 1994). This implies that for any policyand any states we haveV™ (s) > V™(s), and
Tr'(s) = argmax(R(s,a) + Y(3s P2,V (S)). We useV* andQ* for V™ and Q™, respectively.
We say that a policytis e-optimal if |[V* — V™|, < €. We also define the policGreedyQ) as
the policy that prescribes in each state the action that maximize®-thaction in the state, i.e.,
T(s) = argmax Q(s, a).

For a given trajectory letTS2 be the set of times in which we perform actiarn states and
Tsa¢ pe a subset of 52 in which we reached stag Also, #s,a,t) is the number of times action
ais performed in stats up to timet, i.e.,|[T5%N{1,2,3,...,t}|. We similarly define #s,a,5,t) as
TS5 N {1,2,3,...,t}|. Next we define the empirical model at timeGiven that #s,a,t) > 0 we
define the empirical next state distribution at titrees

#(s,a,s,1t)

3 dteTsalt
and R(s,a)=%——
#(s,a,t) (s,3)

P2, = .
s #(s,at)

If #(s,a,t) = 0 the empirical model and the rewardAcan be chosen arbitrarily. We deéirexpec-
tation of the empirical model &ss o[V (S)] = YsesPegV(s). To simplify the notations we omit
s,ain the notationd€Eg whenever evident.

2.3 A Concentration Bound

We often use large deviation bounds in this paper. Since we assume doesdeve can rely on
Hoeffding’s inequality.
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Lemma 4 (Hoeffding, 1963) Let X be a set, D be a probability distribution on X, and.ff, be
real-valued functions defined on X with :f X — [a;,by] for i = 1,...,m, where aand h are real
numbers satisfyingija< bj. Let x,...,Xn be independent identically distributed samples from D.
Then we have the following inequality

P [;iifi(xi)_ (;ii/: fi(X)D(X)> 28]
" [1 3 100~ (12 K <x>D<x>> < ‘Sl < e,
m & m& Ja

Remark 5 We note that the boundedness assumption is not essential and can bd nelegrtain
situations. We also note that sometimes tighter bounds can be obtained usialgtive Chernoff
bound (Angluin and Valiant, 1979).

_ 262m?
e Z{ll(bi —a)

IN

3. PAC Bounds for the Multi-Armed Bandit Problem

In this section we investigate g,d)-PAC algorithms for the MAB problem. Such algorithms
are required to output with probability-16 ane-optimal arm. We start with a naive solution that
samples each arm/{e/2)?In(2n/8) and picks the arm with the highest empirical reward. The
sample complexity of this naive algorithm &n/e?log(n/d)). The naive algorithm is described
in Algorithm 1. In Section 3.1 we consider an algorithm that eliminates one aen the other.

In Section 3.2 we finally describe the Median Elimination algorithm whose sampiglewity is
optimal in the worst case.

Input :€>0,6>0
Output : Anarm
foreach Armac Ado
Sample it’ = 3 In(%§') times;
Let P, be the average reward of aam
end
Outputa’ = argmaxea{ Pa};

Algorithm 1: Naive Algorithm

Theorem 6 The algorithmNaive(g,d) is an (g,8)-PAC algorithm with arm sample complexity
O((n/e?)log(n/3)).

Proof The sample complexity is immediate from the definition of the algorithm. We now prove it
is an(g,8)-PAC algorithm. Leta’ be an arm for which ER(a’)) < r* —e. We want to bound the
probability of the evenpy > Pa-.

P(Pa > Pa) < P(ﬁa’ > E[R(@)] +¢/20rfar <" _5/2)
< P(px > E[R(@)]+£/2) +P(par <r"—¢/2)
< 2exg—2(g/2)%0),
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where the last inequality uses the Hoeffding inequality. Choo&iag2/¢?)In(2n/3) assures that
P (P > Par) < 6/n. Summing over all possibla we have that the failure probability is at most
(n—1)(8/n) <. [ |

3.1 Successive Elimination

The successive elimination algorithm attempts to sample each arm a minimal numireesf
and eliminate the arms one after the other. To motivate the successive elimingbathen, we
first assume that the expected rewards of the arms are known, but th@nmgai€the arms to the
expected rewards is unknown. L&gt= p; — p; > 0. Our aim is to sample ara for (1/A?)In(n/3)
times, and then eliminate it. This is done in phases. Initially, we sample eactiafg)In(n/d)
times. Then we eliminate the arm which has the lowest empirical reward (aadsawple it again).
At the i-th phase we sample each of the i surviving arms

1 1 n
o (& a1 =)

times and then eliminate the empirically worst arm. The algorithm described astAfgd below.
In Theorem 7 we prove that the algorithm(@ d)-PAC and compute its sample complexity.

Input  : 3> 0, bias of arma, pz2, ..., Pn
Output : Anarm
SetS= A; tj = (8/A?)In(2n/d); andty, 1 = O, for every arma: P = 0,i = 0;
whilei <n—1do
Sample every arra € Sfor t,_j —tp_j;1 times;
Let P, be the average reward of amr(in all rounds);
SetS= S\ {amin}, whereanmin = argminyes{Pa}, i =i+1;
end
Output S;

Algorithm 2: Successive Elimination with Known Biases

Theorem 7 Suppose thatyj > 0 fori = 2,3,...,n. Then the Successive Elimination with Known
Biases algorithm is ar0, d)-PAC algorithm and its arm sample complexity is

0 ('09(2>.iA1.2) . )

Proof The sample complexity of the algorithm is as follows. In the first round we samatens

t, times. In the second round we sample 1 armst, ; —t, times. In thekth round (1< k < n)

we samplen—k+ 1 arms fort,_x —tn_k.1 times. The total number of arms samples is therefore
to + S, ti which is of the form (1).

We now prove that the algorithm is correct with probability at leasi®l Consider first a simplified
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algorithm which is similar to the naive algorithm, suppose that each arm is pyl(@g)an(2n/3)
times. For every X i < n— 1 we define the event

={p" > pY|vtjstj>i},

wherepili is the empirical value thigh arm at timd;. If the eventds; hold for alli > 1 the algorithm
is successful.

Plnot(E)] < 3 P[p" < Y]

M=

n

2exp(—2(Li/2)%;) Z exp(—2(Ai/2)%8/A%In(2n/3))

IN
M:

< 2exq In(4n?/8%))

™M =

< (n—i+1)d/n <=

Using the union bound over all;’s we obtain that the simplified algorithm satisfies Bjlwith
probability at least X- 8. Consider the original setup. If arm 1 is eliminated at tim#or some is
implies that some arm< j has higher empirical value at timg The probability of failure of the
algorithm is bounded by the probability of failure in the simplified setting. |

Next, we relax the requirement that the expected rewards of the armsawa kn advance, and
introduce the Successive Elimination algorithm that works with any set od&id$he algorithm we
present as Algorithm 3 finds the best arm (rather #yaest) with high probability. We later explain
in Remark 9 how to modify it to be aft, )-PAC algorithm.

Input :6>0
Output : Anarm
Sett =1 andS=A;
Set for every arna: pl =
Sample every arra € Sonce and lep}; be the average reward of amby timet;
repeat
Let B o= Maxes P, anda; = /In(cnt?/8) /t, wherec is a constant;
foreach arma € Ssuch thatpf,.,— P, > 20 do
setS= S\ {a};
end
t=t+1;
until |§ > 1;

Algorithm 3: Successive elimination with unknown biases

Theorem 8 Suppose thaty; > 0 for i = 2,3,...,n. Then the Successive Elimination algorithm
(Algorithm 3) is a(0,0)-PAC algorithm, and with probability at leadt— & the number of samples
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is bounded by

o(3"%)

Proof Our main argument is that, at any tirnand for any actiora, the observed probabilitg}, is
within o of the true probabilityp,. For any time and actiora € S we have that,

P16~ pal > ) < 20 %t < 20
By taking the constartto be greater than 4 and from the union bound we have that with probability
at least - §/n for any timet and any actiora € S, |p, — pa] < ;. Therefore, with probability
1- 93, the best arm is never eliminated. Furthermore, sinagoes to zero asincreases, eventually
every non-best arm is eliminated. This completes the proof that the algorittthdisPAC.

It remains to compute the arm sample complexity. To eliminate a non-best; ame need to
reach a time; such that, A

Dy = Py, — Py, > 20y,

The definition ofa; combined with the assumption thak, — pa| < oy yields that
A — 20y = (p1—Ot) — (Pi +0t) = P1— Pi = 201,

which holds with probability at least-1 2 for
(o[
oY

To conclude, with probability of at least-15 the number of arm samples i%2- 3 5t;, which
completes the proof. |

Remark 9 One can easily modify the successive elimination algorithm so that(i, &-PAC.
Instead of stopping when only one arm survives the elimination, it is podsilsiettle for stopping
when either only one arm remains or when each oktberviving arms were sampleEDl(ei2 Iog(‘g)).
In the latter case the algorithm returns the best arm so far. In this caseithisud to show that the
algorithm finds arg-optimal arm with probability at least-1  after

{5 54

whereN(A,g) = [{i | A < €}] is the number of arms which ageoptimal.

3.2 Median Elimination

The following algorithm substitutes the tei@{log(1/d)) for O(log(n/d)) of the naive bound. The
idea is to eliminate the worst half of the arms at each iteration. We do not ekgdoest arm to be
empirically “the best”, we only expect anoptimal arm to be above the median.
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Input :€>0,0>0
Output : Anarm
SetS =A e1=¢€/4,00=90/2,/ = 1. repeat
Sample every arm € S for 1/(g,/2)?log(3/8,) times, and lep} denote its empirical
value;
Find the median opf, denoted byry;
S1=S\{a: py <m};
€41 =380 81 =8,/2; 0 = +1;
until |S|=1;

Algorithm 4: Median Elimination

Theorem 10 The Median Eliminatiorg,d) algorithm is an(g,8)-PAC algorithm and its sample

complexity is
n 1
0 (8 l0g (5)> .

First we show that in thé-th phase the expected reward of the best ar® idrops by at most
&

Lemma 11 For theMedian Eliminatiorge, &) algorithm we have that for every pha&e

Plmaxpj < maxp;+¢&/] > 1-29,.
€S €S

Proof Without loss of generality we look at the first round and assumeghest the reward of the
best arm. We bound the failure probability by looking at the etgnt {; < p1 —€1/2}, which is
the case that the empirical estimate of the best arm is pessimistic. Since we saffiqpéngy, we
have thaP[E;] < /3.

In caseE; does not hold, we calculate the probability that an gnwhich is not are;-optimal
arm is empirically better than the best arm.

PBj > P1| Pr> p1—€1/2] <P[Pj > pj+€1/2| P> p1—€1/2] < 81/3

Let #bad be the number of arms which are agbptimal but are empirically better than the best
arm. We have that Ebad| p1 > p1 —€1/2] < nd;/3. Next we apply Markov inequality to obtain,

Pl#bad>n/2| py > p1—£1/2] < ”g’}é 3 _ 25,/3.
Using the union bound gives us that the probability of failure is bounded by |

Next we prove that arm sample complexity is boundedbgn/e?)log(1/3)).
Lemma 12 The sample complexity of tiéedian Eliminatiorte, 8) is O((n/e?)log(1/3)).

Proof The number of arm samples in theh round is 4y log(3/3,) /€2. By definition we have that
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1. 61:5/2 ; 5(:@_1/2:5/2[

2.n=n; np=n_1/2=n/2"1

3.e1=¢/4; g =3¢ 1= (%)6718/4
Therefore we have
%M 1y, 1og(3/8)) log;(n) n/zf liog(2/3/3)
/Z e oz = 4 /Z k 1
& (&/2) €/4)2
logs(n log(1/3) Iog(3) ¢log(2)
= 64; ” Y -2 2tz )
nlog<1/6> 1 nlog(1/3)
< B 3 9) ((C'+C) = O(— ")

Now we can prove Theorem 10.
Proof From Lemma 12 we have that the sample complexity is boundeﬁd(lnyog(l/é)/sz). By
Lemma 11 we have that the algorithm fails with probabidityn each round so that over all rounds
the probability of failure is bounded bjiozgf(”) 0 < 4. In each round we reduce the optimal reward

of the surviving arms by at most so that the total error is bounded gﬁz(”) g <E&. [

4. Learning in MDPs

In this section we consider algorithms for the RL problem, which are bas#tedvAB algorithms
presented above. We start from model-based learning in Section 4.de Whieeparameters of the
models are learned. We describe algorithms which are based on thesiveadisnination algo-
rithm and provide stopping conditions for these algorithms. In Section 4. 2n&der model-free
learning and suggest a version of the Q-learning algorithm that incatgsoaction elimination and
stopping conditions. In Section 4.3 we analyze the batched sampling settirepafiskand Singh
(2002) and provide a mechanism that can use(ary)-MAB algorithm to enhance the performance
of the Phased Q-learning introduced in Kearns and Singh (2002). Wemlgide a matching lower
bound.

4.1 Model-Based Learning

In this section we focus on model-based learning. In model-based meth®iisst learn the model,
i.e., estimate the immediate reward and the next state distribution. Then by eitheiteadtion,
policy iteration, or linear programming on the learned (empirical) model, we fim@xhact optimal
policy for the empirical model. If enough exploration is done, this policy is atrapsmal for the
true model. We note that there is an inherent difference between the finitemand the infinite
discounted return. Technically, the finite horizon return is simpler than teeuli¢ed return, as one
can apply the concentration inequality directly. We provide model-basedthlgs for both cases.
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4.1.1 HNITE HORIZON

Let us first recall the classical optimality equations for finite horizon:
VvH(s) = max{R(s,a) + Eg VH-LE)), H>0
VO(s) = maxR(s,a),

whereVH (s) is the optimal value function for horizoH. We often abuse notation by usingy E
instead of E 5. Given the empirical model by timtewe define the upper estima¥g, which will

be shown to satisfy for every horizdnand every stats, \72(5) > VK(s) with high probability. For
horizonH we define:

H A o H-1 |n(W)

Vs(9 = max{Risa)+Es[Vs ()] +HRuax e p M0 @
. . In(<SA

Va(s) = max{R(s,a) +Rrax w} @3)

for some constart > 4. Similarly to the upper bounﬁg, a lower bound may be defined where
the Rnaxis replaces by-Rnax We call this estimate the lower estimaig. The following Lemma

proves tha’tT/g| is an upper estimation for any horizon and t’ﬁgtis a lower estimation.

Theorem 13 We have thaV('f)(s) > VK(s) > VK(s) for all states s and horizons k, with probability
at leastl—d.

Proof We prove the claim by induction. For the base of the induction, by a simplef lismedfding
inequality we have that for every staﬁgg(s) > max, R(s, a) with probability 1— 8/(c|S/|A]) . Next

we assume that the claim holds o€ k and prove fokk+ 1 and for every actiom. By definition

\7'3*1(5) satisfies for everg that

T2
in (CSIAGHE

Teap

VE™Ns) > R(sa)+EsVE(S)] + (k+ 1)Rmax

> IQ(S, a)+ Eg [Vk(S’)} + (k4 1)Rmax

where the second inequality follows from the inductive hypothesis. Notathis not a random
variable, so we can bound the last expression using Hoeffding's atiegVe arrive at:

P{Ii(s, a) + E¢[V¥(s)] + (k+ 1)Rmax ITs4|

<R(sa)+Eyg [Vk(S')]}

,|n(C\SHA\(k+1)2 yirsa) | (k- DRmax 2
5 /|TS3| 6
<e ((k+1)Rmax?

= ~ oSjA[(k+1)2

1090



ACTION ELIMINATION FOR REINFORCEMENTLEARNING

Therefore, we have that with high probability the following holds

In (C\ﬂ\éﬁkz)

k1
Vs (s) W}

Y

max{R(s,a) + Es[VX(S)] + kRnax

Y

max{R(s,a) + Es[V(s)]}
Vk+l(8).
Using the union bound over all state-action pairs and all finite horikpmge obtain that the

failure probability is bounded by/2 for c > 4. Repeating the same argument for the lower estimate
and applying the union bound completes the proof. |

Consequently, a natural early stopping condition is to stop sampling H\W\%FFMH |l < €. We do
not provide an algorithm here, however a detailed algorithm will be givehérfollowing subsec-
tion.

4.1.2 DSCOUNTEDRETURN - INFINITE HORIZON

In this subsection, we provide upper and lower estimates of the value fanttior the infinite
horizon case. The optimal value is the solution of the set of the equations:

V*(s) = mgx{R(s, a)+YEg[V*(S)]}, seS

As in Subsection 4.1.1, we provide an upper value fundfignwhich satisfies with high probability
Vs(s) > V*(s). We define\7t5 at timet as the solution of the set of equations:

ot A o ot |n(M)
V5(s) = méalx{ R(s,a) + YEs [V(S)] + Vimax ﬁ
for some positive constantand@% as:
. A L In( SIS AL
Qs(s,a) = R(s,a) + YEg[V5(S)] + Vinax ﬁ-
Similarly, we define/§ andQy, as:
t ) R |n(0t2\§ |A\)
. 5 In( 3]

The next lemma shows that with high probability the upper and lower estimatienadgeed
correct.

Lemma 14 With probability at leastl — 6 we have tha@té(s, a) > Q(s,a) > ga(s, a) for every
state s, action a and time t.
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Proof Suppose we run a value iteration algorithm on the empirical model alttilxmvg’k be the

kth iteration of the value function algorithm at tirheand Iet@tgk be the associated Q-function, that
is

|n(Ct2\§|A\)

Q'(5:) = R(s.2) + ¥E¢ V5 ()] + Vnar||

Assume that we start wifﬁtgo =V*. (The use oW* is restricted to the proof and not used in the
algorithm.) We need to prove th@g(s, a) > Q*(s,a) for everysanda. Note that since the value
iteration converge@gk converges t(ﬁg. We prove by induction on the number of the iterations
that by taking\f/ta-;0 =V*, with high probability for everk we have tha@tgk > Gtgkfl, ie., P[Vkég >
Ggfl] >1- C—fz. For the basis, sindé* is not a random variable we can apply Hoeffding’s inequality
and obtain that for every state action pgra)

|n(012|53\A|)

P{R(S &)+ VBV (3)]+ Vinax| | e

<R(s,)+VEs V()]

c?|S)jA| o)
ey &
T

Si t,0 « =t,1 ~ ~ 10 |n(ct2\§,{\A\)
inceVy (s) = V* we have tha; (s,a) = R(s,a) + YEs [V (S)] + Vimax —ysar—- Therefore,

65’1 > 62—;0 with probability 1— c%- For the induction step, we assume that the claim holds<ok
and prove fok.

% (sa)-Q Hsa) = YE«VEUS) -V AE)).

Since\7t5’k_1(s’) = ma)gétg;k_l(s’, a) we have by the induction that for evesy

V3 H(e) = maxQs T (s.8) > maxQs (s.a) = v (o).

So tha@gk —ng_l > 0. We conclude thaP[Qs > Q"] > 1— c% Repeating the same argument

for the lower estimateQ;, and applying the union bound over both and over all times completes the
proof for the appropriate. |

The AE procedure is demonstrated in the following algorithm, which also sgpalstopping
condition for sampling the model and eliminates actions when they are sub-opfittm&ligh prob-
ability.
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Input :MDPM,e>0,0>0

Output : A policy for M

Choose arbitrarily an initial statg, lett =0,

and letUp = {(s,a)|s€ Sac A}

repeat
At states perform any actiom s.t. (§,a) € U
Receive a reward, and a next statg 1
Compute Q5, Q, from all the samples
t=t+1
Ut = {(s.a)|Qs(s,@) = V5(5)}

until V(s,a) U [Qs(s,a) — Q,(s,8)| < 1y,

return GreedyQy)

Algorithm 5: Model-Based AE Algorithm

A direct corollary from Lemma 14, is a stopping time condition to the Model-Basgarithm
using the following Corollary.

Corollary 15 [ Singh and Yee (1994)] I8 is a function such thaQ(s,a) — Q*(s,a)| < ¢ for all
se Sanda A. Thenforall s

V*(s) —VT(s) < ——,

~ 2€
1-y

whereft= GreedyQ).

Theorem 16 Supposed the Model-Based AE Algorithm terminates. Then the pulitye algo-
rithm returns ise-optimal with probability at leasl — d.

Proof By Lemma 14 we know that with probability at least- D for everys, a and timet we have
thatQ,(s,a) < Q*(s,a) < Qs(s,a). Therefore, with probability of at least-1 the optimal action
has not been eliminated in any state in any ttmEurthermore, any actiomin states that has not
been eliminated satisfigg*(s,b) — Q,(s,b) < Qs(s,b) — Q4(s,b) < &(1—-y)/2. The result follows
by Corollary 15. |

4.2 Model-Free Learning

In this section we describe a model-free algorithm. We use two funo@basd@t, which provide
lower and upper estimations @i, respectively. We use these functions to derive an asynchronous
algorithm, which eliminates actions and supplies stopping condition. This algamihuaires space
which is proportional to the space used by Q-learning and convergks time same conditions.
Let us first recall the Q-learning algorithm (Watkins, 1989). The Qrliegralgorithm estimates the
state-action value function (for discounted return) as follows:

QL(sa) = 0O,
Qt+l(sﬂa) = (1—0(t(s,a))Q‘(s,a)+(xt(s,a)(rt(s,a)+w‘(s')),

N
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wheres is the state reached from stat@hen performing actioa at timet, andv'(s) = max Q'(s, a).
Seta(s,a) = 1/#(s,a,t) fort € TS and 0 otherwise! We define the upper estimation process as:

Rsa) = Vnadn (A
—t+1

Q5 '(sa) = (1-a(sa)Qs(s.a)+a(s.a) (Rs.)+ Wi(s) +Bl(sat) ).

wherec > 4 ands  is the state reached from staevhen performing actiom at timet, \7%(5) =
maxaéts(s, a) and the functior3, which maintains the upper estimate interval is defined as:

sw»—k(¢Mn@wwvwmy—u—iﬂqJW—lwmak—n%amv&)wmx
Analogously, we define the lower estim&e as :

Q}(s.@) = —Vmadn (C|Sé‘A’ );

Qlsa) = (1-a(sa)Qh(sa)+asa)(Risa)+Wi(e) - BHsab)),

whereV5(s) = maxa Qs (s,a). We claim that these processes converge almost surdly.tqThe
proof appears in Appendix A.)

Proposition 17 If every state-action pair is performed infinitely often then the upper (loesti)
mation processﬁté (Qté), converges to Qwith probability one.

The following Proposition claims the@; upper bound€)* andgg lower boundsQ* with high
probability.

Proposition 18 With probability at leastl — & we have that for every state action p&s;a) and
time t:

Qs(sa) > Q'(s.8) > Gy(s,a).
Proof We start by defining disjoints events such that their union is the evepnot always being

an upper bound d®*. Let

Exsa = {The firsttime for whichQ is not an upper bound of
Q" is whena is performed at stateat thekth time}.

Note that ifQ does not upper boun@* it implies that one of the event s, occurred. Next we
bound the probability that an eveBk s, happens. Note that the ony value that has changed
wherea was performed art thieth time at states is Q(s,a). We lett’ be the time ok sa and note

thatQ'(¢,a) > Q*(s,a) for anyt < t'.

P(Eksa) = P (@tl(s, a)—Q'(s,a) < O)

1. This particular learning rate is especially convenient, since the recer® = (1 — 1/t)X_1 + (1/t)6; has the
solutionX; = (1/t)3t_, 6;.
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Input :MDPM,e>0,0>0
Output : A policy for M
For every state actiofs,a):
Q(s5,8) = Vmaxn (454
Q(S,8) = —VimaxIn (934
#(s,a)=1
Choose an arbitrary initial stage
repeat
LetU(s) = {alQ(s.a) > V(s)}
choose arbitrarily actioa € U (s), perform it and observe the next state

Qsa) = (1 5d5)QAs.a) + 5y (Rs.) + W(S) + Bl(s.a) )
Qsa) = (1 5k5)Qsa) + 5y (Ris.a) + W(S) - Bl(s.a))

#(s,a) =#(sa)+1;s=¢
until vse S vacU(s) [Q(sa) - Q(s.a)] < %5Y;
return GreedyQ)

Algorithm 6: Model-Free AE Algorithm

k

- P<ii;(ri+wt‘(s)+ﬁ(i))—Q*(S,a)<0>
k

< P(i_zlm+w*<s>+s<i>>—o*<s,a><0)

< 0
T CSjAK

where we could apply Hoeffding’s inequality singé is not a random variable. Now taking the
union bound over all pairgs,a) and timesk completes the proof for the upper estimate. A similar
argument for the lower estimate completes the proof. |

We combine the upper and lower estimates to an algorithm, which eliminates subiaatima
tions whenever possible. Furthermore, the algorithm supplies a stoppiniifioa that assures a
near optimal policy. The model free AE algorithm is described in Algorithm 6.

A direct corollary from Proposition 18 is a stopping condition to the model AE algorithm.
The following corollary follows from Corollary 15 and its proof is similar to thregf of Theorem
16.

Corollary 19 Suppose the Model-Free AE Algorithm terminates. Then the policy, it eteen
optimal with probability at leasi — .

4.3 MAB Phased Q-learning Algorithm

In contrast to previous sections concerning learning in MDPs, we reftécsetup in this section.
In this limited setup we can fully exploit the connection between the MAB probledhlearning
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in MDPs. The setup is that of parallel sampling where the decision makeracaples every state
and action pair, as opposed to the typical Q-learning setup where a siajgletdry is followed.
We will focus on the phased Q-learning algorithm Kearns and Singh §20Bh partitions the
learning to phases. We will use a MAB black-box to perform the updatesach state and phase
of the phased Q-learning algorithm. Although the parallel sampling model & mgatlistic model it
is often considered in theory as a relaxation of the MDP model which still captoany important
aspects of the original problem; see Kearns and Singh (2002), Szieaed Munos (2005). The
parallel sampling model can represent a situation where sampling fromedifftates is very cheap
(for example, when a simulator is available), so there is no real need to falsimgle trajectory. In
this case, reducing the number of samples needed for finding an optinagijaximately optimal)
policy is the main concern.

In phased Q-learning the value \4f(s) is fixed during thekth phased and updated only at the
end of the phase. This implies that for every state and a¢fi@) we can define a random variable
Ys(a) whose value ifR(s,a) + Wk(s), whereR(s,a) is the random variable representing the reward
ands' is distributed usingrZ .

Our aim is to find, at each state, the action that maximizes the expected rewdrdstimate
its expected reward, where the rewards ¥@). The phased Q-Learning can now be viewed
as using the naive algorithm for the MAB problem (Algorithm 1) in order tal fihe best arm.

In the following we show how, using more sophisticated MAB algorithms, omeirmgrove the
convergence rate of the Phased Q-Learning.

Our algorithm uses ang(d)-PAC Multi-armed bandit algorithm as a black box in the learning
process. In order to use the MAB algorittBras, a black box, we define a simple interface, which
requires the following procedures:

e Initg(g,d) - Initialize the parameters .
e GetArng() - returns the arna thatB wants to sample next.
e Updates(a,r) - informsB the latest reward of arma.

e Stom(a,Vv) - returns TRUE ifB terminates, and in such a cases the output oB andv is its
estimated value. (We assume that on termination, with probability at leadt the arma is
ane-optimal arm andr* —v| < €.)

The MAB Phased Q-learning algorithm uses as a black box, an algoBttomthe MAB prob-
lem. It receives as inpuf,d) and returns a policyt which is e-optimal with probability at least
1-0.

Suppose that we have sonmged)-PAC MAB algorithm B, and assun® has arm sample com-
plexity Tg(€,d). Namely, with probability - 8, algorithmB terminates after at mo3i(¢g,8) and
outputs a policyrt which ise-optimal. The following theorem computes the sample complexity of
MAB Phased Q-Learning algorithm as a functionigf

Theorem 20 Assume B is aré(S)—PAC multi-armed bandit algorithm. Then the MAB Phased Q-
Learning g, d) algorithm outputs a policytwhich ise-optimal policy with probability at least — 5,
and has sample complexity of

~ S —v)? -
Tie8) = STle Blen ) =0 (1 2yn e (55" ) )
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Input  :¢€,06> 0 andB a multi-armed bandit algorithm
Output : A policy

Lete = 20 n = log, (8/2Vnad = O(In(25:)/(1-V))i = &
Initialize for everyse S: Vp(s) = 0;
fori=1:ndo
foreachse Sdo
InitB(é, 6),
repeat
a= GetArng();
(,r) = samplés,a);
r'=r+Wi(s);
U pdates(a,r’);
until Stoda,v) = TRUE
Viga(s) =V, T(s) = &

end
end

Algorithm 7: MAB Phased Q-Learning algorithm

First we show that in each phase the ndMi — V||, decreases.

Lemma 21 AssumeB s aré(S)-PAC multi-armed bandit algorithm, and consider the MAB Phased
Q-Learninge, d) algorithm using B. Then with probability at leakt- 5, for all k <n, [[V* — V|«

is bounded by®, + VimayK.

Proof First we bound the probability th& outputs an arm which is natoptimal. We bound the
failure probability by using the union bound on all the invocationB.of here are

Vmax
|Sin =[S} logy (& /Vimax) = O (S“”(u—w)>

1-y

initializations of algorithmB and for each invocation the failure probability is boundeddp}s|n.
Thus, the failure probability is at mo&t

Next, we show that the error contracts in every phase. We compareltieevestorV, with the
standard value iteration value veckgrfor the case of a known model (at the end of kil step).
Formally,

Vicra(s) = max{E[R(s,u)] +YEs Vi(s)]}

wheres' is distributed according tByy andVp = 0.
We show by induction on the number of phases, that ]\Vk—\7k\|oo < l—fy The base of the

induction,t = 0, for every stats we havedy = |Vo(s) — Vo(s)| = 0. We assume that the induction
assumption holds fdr< k and prove fok. Letms 5 denote the number of times the state action pair
(s,a) was sampled in thk-th iteration.

Msu
M) k() = ma 3 r(s )+ Wea(S)
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~maxE[R(s,a)] +v P2 Vi 1(5)] ‘
S

<  max
pe{-EE}

u

maxE[R(s,u)] + vg PegVk-1(s)] +p

~maXE[R(s,a)] +v}) P2sVi-1(S)] ’
s

< é+maax\y§ P2y (Vk-1(8) ~Vk-1(8)|
< E+ydka

ey E

= Y Ty

1:0 conclude the proof note that for the value iteration we have|ﬂ3ia@&V*||00 < YVimax Where
Vo = 0 (see, e.qg., Bertsekas and Tsitsiklis, 1995). [ |

Lemma 22 When the MAB Phased Q-Learning algorithm terminates, the patigyreturns is
e-optimal with probability at leasi — .

Proof By Lemma 21 we have that with probability at least-5 the differencel|Vk — V7| <
15+ Vma*. Sincet = £(1-y)?/2, we have thafiVk —V*[|e. < &(1—V)/2+Vmay*. The lemma
follows from our choice oh = log, (€(1 —Y)/2Vmax). [ |

We can now complete the proof Theorem 20.
Proof The correctness follows from Lemma 22. We bound the sample complexityiasgo By
definition, the MAB Phased Q-Learning algorithm samples at each statectéind during every
phaseTg(€,d). By definition of the algorithm, the number of phases is O (In(Vmax/€)/(1—V)),
and each phase is composed frd8hMAB instances. This completes the bound on the sample
complexity. |

Applying the multi-armed bandit algorithms described in the previous sectiordeviee the
following corollary. We show that by using thmedian eliminatioralgorithm, the arm sample
complexity can be reduced by a factor of (04).

Corollary 23 Let B be the median elimination algorithm. MAB Phased Q-Learning algorithasn h
sample complexity

_ S| |AVfax Vimax IS/ IN(Vinax/€)
T(e,5)—0<(1_y)582In((l_y)s)ln( 51y ))_

Next we introduce an almost matching lower bound. Let us introduce soneermotation before
we proceed. LeT denote the time until an RL algorithm stops (this may be in general a random
number). For a given RL algorithinand a given MDA we denote by EM the expectation with
respect to randomization in both the algorithm and the MDP.
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Theorem 24 Let L be a learning algorithm for MDPs under the parallel sampling modelerg&h
are constants €C,, €9, 8o, Yo such that for everg € (0,£g), & € (0,8p), andy € (0,Yp) if L returns
an g-optimal policy with probability of at least — & for every MDP with discount factoy there
exist an MDP M for which:

A C A 1
E-MTI>C (Jﬁjl)zsz log (;) =Q ((1‘?\,)!82 |09(6)> .

Proof Consider the following construction which was used in Theorem 1 of Miaand Tsitsiklis
(2004) for the MAB problem. A MAB problem withA| arms is given. We enumerate the arms
from 0 to|A| — 1, and fix€ > 0. In each of the states one of the following hypotheses is true:

Ho:r(0)=1/2+¢; ri)=1/2 (i=12,...,|JA-1)),
andfor¢=1,2,...,|A| —1:
Hy:r(0)=1/2+§; r(i)y=1/2 (i=212,...,|A=1],i#£L); r(l)=1/2+2¢.
Let E; be the expectation given than hypothésids true, andA(s) the event that the algorithm errs
in states. In Lemma 4 in Mannor and Tsitsiklis (2004) it was proved that there arstaotsc; and

c, such that foi€ < & every algorithm that can identify the true hypothesis with probabilinSl
for all the hypotheses must satisfy that:

EolT) > 6 Tlog(F). @

We create the following set of MDPs. In each possible MDP theréSustates andlA| actions in
each state. All the states are absorbing and have one of the Abhgpetheses per state. The reward
in each state behaves accordingHgor one of theH,. (There ardA|lS possible MDPs.) We set
€ = 2(1—y)e. We run algorithni until termination. Wher terminates it returns a policy which is
e-optimal with probability of at least & 8. Since every state is absorbing, and by our choicg of
it implies that the right hypothesis was found in all states. Note that evereturns a randomized
policy, we will determine that the action with the highest reward is the bestthiseig the reason
for the factor of 2 in determining). By taking the sum of Eq. (4) over all states we obtain that

A-1 C
EMT] > A siog(Z).

The result follows by an appropriate choice of constants. |

5. Experiments

In this section we show four types of MDPs in which the number of sampleshysAE procedures

is significantly smaller than the number of samples used by standard Q-leamdigggreedy Q-
learning. Both model free AE algorithm and standard Q-learning cho@sadtion in each state
uniformly at random. In our experiments we focused on the steady state (herweighted by
steady state probabilities) rather than thenorm to emphasize the average behavior. We note that
we use the steady state rather than the discounted steady state. We ruheAiiQg algorithm
from Section 4.2 with the same input (for actions that were not eliminated)tas@asd Q-learning
algorithm. The following experiments were conducted:

1099



EVEN-DAR, MANNOR AND MANSOUR

1. A queueing system.The MDP represents a queueing problem that appears in Differentiated
Services (Aiello et al., 2000, Kesselman et al., 2004). The basic settiadisadrthe arriving
packets have different values and they are buffered in a FIFO chefoee being sent. The
major constraints are that we reject or accept a packet upon its gnvgreemption) and
that the buffer has limited capacity. We have analyzed a queue of sizentivihiee different
packets values,,20,150. In each time unit we either receive a packet or send a packet
according to some distribution. We modeled the queueing problem via a disdoMDP
with discount factoy = 0.99. The AE model-free algorithhwas compared witb-greedy Q-
learning with epsilon varying from.05 to Q2. In Figure 1 we present the results fowhich
was empirically bestg = 0.1. In this experiment we used a fixed step size. We focused here
on the fraction of times in which optimal actions were performed and on the f@hation
criterion. The results are demonstrated in Figure 1, in which we see thanhhoAE has
better results but the variance in the results is much smaller in both the fractiomesfthat
almost optimal actions were performed and in the value function. Figure 2rdgtrates the
elimination rate of the AE procedure.

The queue problem: AE Vs.e—-greedy The queue problem: value function
T T T T T T 1 T T T
09 — AE Q-learning ‘
= E&Hz_ﬂ_r}i: —_Eps greedy, Q-learning eps =.1
S I i 0.9 T 8l
= L o =
- i : H
; TR o S ANPNEYY
S 1 Sos \/I\ ] L
o) = L i A e e
g .
g o 1
a 4] B b
5 E=
4= 0.6 -
(] g N =
g S '
— =1 \
% Q os !
o s
£
= AE Q-learning 04
or H
= = e—greedy Q-learning, £ =0.1
o1 ; ; i ; : ‘ 03 ; ;
0 05 1 15 2 i 25 3 35 4 15 2 25 3 35 4
Iteration x10° Iteration x10°

Figure 1: Example of a Queue of size 5 with three types of packets with val@2€s150. The
discount factor is set t0.99. We disregard the full queue state in which every action is
optimal. We repeated each experiment 15 times and the error bars reédresendard
deviation.

2. Random MDPs. Two types of random MDPs were randomly generated. In both types there
were 20 states and 50 actions in each state. The first type is due to Puté@8dh &nd is
a sparse MDP, such that each action can reach only three states.cbhd sge of random
MDPs is dense, such that the next state distribution is randomly choseactoistate-action
pair and might include all states. For both MDPs the immediate reward expedtatiam-
domly chosen in the intervdD, 10]. Results of ten runs are presented by Figure 3 for the

2. Since we were interested in the short term results rather than the longueiinitialized the upper and lower values
to similar values and allowed elimination only after an exploration period, weustlt! theB function for both the
upper and lower estimates as stated in the theoretical part up to constants.
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The queue problem: Elimination Progress

Fraction of valid actions
o o 3 o °
& 2 & 5 2

|

o
N

o
[

, . , . | | !
0.5 1 15 2 25 3 35 4
Number of Samples x10°

Figure 2: Example of a Queue of size 5 with three types of packets with val2€s150. The
discount factor is set t0.99. This figure demonstrates the elimination rate. We repeated
each experiment 15 times and the error bars represent 1 standartibdevia

Sparse Random MDP,y=0.83

12

I} = AE Q-Learning

-, 111+ Q-Learning
11+ s d

10

Precision

6

0 0.2 0.4 0.6 1 12 1.4 16 1.8 2

0.8
Number Of Samples x 10"

Figure 3: Example of a 20 state sparse randomly generated MDPs with 5Qsactieach state,
wherey = 0.833 (as in Puterman (1994).) The precision is the distance @tfumction
from the optimalQ-function. We repeated each experiment 10 times and the error bars
represent 1 standard deviation.

sparse MDP, in this experiment the model free AE algorithm needs onlyt dadiuhe sam-
ples used by the Q-learning to achieve the same precision. The precisioasanee as the
distance of the Q-function from the optimal function in steady state norm. lar&ig for
dense MDP, the results are similar. The AE algorithm required about 40%s Bamples.
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Dense Random MDP,y =0.9

38

I = AE Q-Learning
37 |

++++ Q-Learning

36

35

Precision
8 %
T T

)
R
T

31r

30

291

28
0

0.2 0.4 0.6 1 12 14 1.6 18 2

0.8
Number Of Samples x 10’

Figure 4: Example of a 20 state dense randomly generated MDPs with 50saittieach state,
y=0.9. The error bars represent 1 standard deviation.

3. Howard'’s automobile replacement problem.This MDP represents another realistic problem—
Howard’s automobile replacement problem Howard (1960). This probtettains 40 states,
in each state there are 41 actions. See Howard (1960) for a detailegbtiesc This problem
was considered as a benchmark by several authors in the optimization cagriveused
the model free AE algorithm for this problem with discount fagter 0.833 against standard
Q-learning and the results appear in Figure 5. A significant improvemevitisre.

Howard’'s Automobile Replacement Problem, y=0.83
11 T T T T

= AE Q-Learning

1+ B 1+ Q-Learning

0.9

Precision
° o
~ ™
: :

0.6

0.5

0.4
0

I
0.5

1 15 2 25
Number Of Samples x10°

Figure 5: Example of Howard’s Automobile Replacement Problem, wherdsheuht factory, is
0.833. The norm is the steady state norm. The error bars representarstaeviation.
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6. Future Directions

Extending the concept of action elimination to large state spaces is probahiyotemportant
direction. The extension to function approximation, which approximates the finction, requires
some assumptions on the value (or Q) function approximation architectulewihg Kakade and
Langford (2002) we can consider value functions that can be appabed under the infinity norm.
For an example of such an algorithm see (Ormoneit and Sen (2002)pnVEmence rate of the
function approximation is provided, as in (Ormoneit and Sen (2002)),ahekE procedure can be
derived as before.
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Appendix A. Proof of Proposition 17

In order to show the almost sure convergence of the upper and lotivaadens, we follow the proof
of Bertsekas and Tsitsiklis (1996). We consider a general type@tive stochastic algorithms
which is performed as follows:

Xera (i) = (L= oe(i)) X (1) + o (i) (HX) (1) +we (i) + e (i),

wherew; is a bounded random variable with zero expectation and Elaisha pseudo contraction
mapping (See Bertsekas and Tsitsiklis, 1996, for details).

Definition 25 An iterative stochastic algorithm is well behaved if:
1. The step sizey (i) satisfies (L o0 (i) = oo, (2) 31 002(i) < w0 and (3)a(i) € (0,1).
2. There exists a constant A that boundé Wor any history F, i.e.,Vt,i: |w(i)| <A.

3. There existg € [0,1) and a vector X such that for any X we haygHX — X*|| <y||X —X*||,
where|| - || is any norm.

4. There exists a nonnegative random sequéndbat converges to zero with probability 1, and
is such that
Vit | (i) < 8 ([|%][+1)

We first note that the Q-learning algorithm satisfies the first three critedidhrenfourth criteria
holds trivially sinceu; = 0, thus its convergence follows if all state-action pairs are tried infinitely
often (see Proposition 5.6 in Bertsekas and Tsitsiklis, 1996). The uppera¢e has an additional
noise termy. If we show that it satisfies the fourth requirement, then the convergeitidellow.
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Lemma 26 The upper estimation algorithm is well behaved.

Proof In the convergence proof of Q-learning, it was shown that requirésmies8 are satisfied,

this implies that the upper estimates satisfies them as well. Now we4e6; = ¢ '”ﬁSﬁ?me

It follows that6; converges to zero, thus

U ()] = 6 < B (I %] + 1)

Similar result holds for the lower estimate as well.
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