
Journal of Machine Learning Research 7 (2006) 1079–1105 Submitted 2/05; Published 6/06

Action Elimination and Stopping Conditions for the
Multi-Armed Bandit and Reinforcement Learning Problems∗

Eyal Even-Dar EVENDAR@SEAS.UPENN.EDU

Department of Information and Computer Science
University of Pennsylvania
Philadelphia, PA 19104

Shie Mannor SHIE@ECE.MCGILL .CA

Department of Electrical & Computer Engineering
McGill University
H3A-2A7 Qúebec, Canada

Yishay Mansour MANSOUR@CS.TAU .AC.IL
School of Computer Science
Tel-Aviv University
Tel-Aviv, 69978, Israel

Editor: Sridhar Mahadevan

Abstract
We incorporate statistical confidence intervals in both themulti-armed bandit and the reinforcement
learning problems. In the bandit problem we show that givenn arms, it suffices to pull the arms a
total of O

(

(n/ε2) log(1/δ)
)

times to find anε-optimal arm with probability of at least 1−δ. This
bound matches the lower bound of Mannor and Tsitsiklis (2004) up to constants. We also devise
action elimination procedures in reinforcement learning algorithms. We describe a framework
that is based on learning the confidence interval around the value function or the Q-function and
eliminating actions that are not optimal (with high probability). We provide a model-based and a
model-free variants of the elimination method. We further derive stopping conditions guaranteeing
that the learned policy is approximately optimal with high probability. Simulations demonstrate a
considerable speedup and added robustness overε-greedy Q-learning.

1. Introduction

Two of the most studied problems in control, decision theory, and learning in unknown environment
are the multi-armed bandit (MAB) and reinforcement learning (RL). In this paper we consider
both models under the probably approximately correct (PAC) settings and study several important
questions arising in this model. The first question is when can an agent stop learning and start
exploiting using the knowledge it obtained. The second question is which strategy leads to minimal
learning time. Since the multi-armed bandit setup is simpler, we start by introducingit and later
describe the reinforcement learning problem.

The Multi-armed bandit problem is one of the classical problems in decision theory and control.
There is a number of alternative arms, each with a stochastic reward whoseprobability distribution is
initially unknown. We try these arms in some order, which may depend on the sequence of rewards

∗. Preliminary and partial results from this work appeared as extended abstracts in COLT 2002 and ICML 2003.

c©2006 Eyal Even-Dar, Shie Mannor and Yishay Mansour.

EVEN-DAR, MANNOR AND MANSOUR

that have been observed so far. A common objective in this context is to finda policy for choosing
the next arm to be tried, under which the sum of the expected rewards comes as close as possible
to the ideal reward, i.e., the expected reward that would be obtained if we were to try the “best”
arm at all times. One of the attractive features of the multi-armed bandit problem is that despite its
simplicity, it encompasses many important decision theoretic issues, such as thetradeoff between
exploration and exploitation.

The multi-armed bandit problem has been widely studied in a variety of setups.The problem
was first considered in the 50’s in the seminal work of Robbins (1952) that derives strategies that
asymptotically attain an average reward that converges in the limit to the rewardof the best arm.
The multi-armed bandit problem was later studied in discounted, Bayesian, Markovian, expected
reward, and adversarial setups. (See Berry and Fristedt, 1985, for a review of the classical results
on the multi-armed bandit problem.) Most of the research so far has considered the expected regret,
and devised strategies for minimizing it. The seminal work of Lai and Robbins (1985) provides tight
bounds as a function of the Kullback-Leibler divergence between the arms reward distribution, and
a logarithmic growth with the number of steps. The bounds of Lai and Robbins(1985) were shown
to be efficient, in the sense that the convergence rates are optimal. The adversarial multi-armed
bandit problem was considered in Auer et al. (1995, 2002), where it was shown that the expected
regret grows proportionally to the square root of the number of steps.

We consider the classical multi-armed bandit problem, but rather than lookingat the expected
regret, we develop PAC style bounds. The agent’s goal is to find, with highprobability, a near
optimal arm, namely, with probability at least 1−δ output anε-optimal arm. This naturally abstracts
the case where the agent needs to choose one specific arm, and it is given only limited exploration
initially. Our main complexity criterion, in addition to correctness, is the number of steps taken
by the algorithm, which can be viewed as pure exploration steps. This is in contrast to most of
the results for the multi-armed bandit problem, where the main aim is to maximize the expected
cumulative reward while both exploring and exploiting. Therefore, methods which balance between
exploration and exploitation such as softmax, andε-greedy are not comparable to our methods.
Following our initial conference publication, a lower bound on the number ofsteps needed to obtain
a PAC solution was developed in Mannor and Tsitsiklis (2004); it matches the upper bound we
develop in this paper.

The MAB problem models a situation where the environment is static and the same decision has
to be made repeatedly. In many cases of practical interest, the model shouldrepresent a situation
where the state of the system changes with time. This is encompassed in the Markov decision
process model (MDP), that has been the subject of intensive research since the 1950’s. When the
model is known, and learning is not required, there are several standard methods for calculating the
optimal policy - linear programming, value iteration, policy iteration, etc.; see Puterman (1994) for a
review. When the model is not known a-priori, alearningscheme is needed. RL has emerged in the
recent decade as unified discipline for adaptive control of dynamic environments (e.g., Sutton and
Barto, 1998, Bertsekas and Tsitsiklis, 1996). A common problem with many RLalgorithms is a slow
convergence rate, even for relatively small problems. For example, consider the popular Q-learning
algorithm (Watkins, 1989) which is essentially an asynchronous stochasticapproximation algorithm
(Bertsekas and Tsitsiklis, 1996). Generic convergence rate bounds for stochastic approximation
(e.g., Borkar and Meyn, 2000) or specific rates for Q-learning (see,Kearns and Singh, 1998, Even-
Dar and Mansour, 2003) are somewhat disappointing. However, the generic convergence rate is
shown there to be almost tight for several particularly bad scenarios. The question that we ask

1080

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

is: When is enough information gathered? When can the learning agent declare with reasonable
confidence that the policy discovered is optimal, or at least approximately optimal? To summarize
the differences, we are not concerned in the generic convergence rate (which must be slow), but we
are rather interested in supplying rates which will be adjusted to the specific MDP parameters and
as a result are much better for certain problems.

The problem of obtaining stopping conditions for learning in MDPs is a fundamental problem
in RL. As opposed to supervised learning problems where typically a data set is given to the learner
who has to commit to a classifier (or regressor in regression problem), in RLthe decision maker can
continue its interaction with the environment and obtain additional samples. The stopping rules that
are currently employed in practice are based on ad-hoc rules, and may lead to premature stopping
or to overly long trajectories.

When an action in a certain state can be determined tonot belong to the optimal policy in an
MDP, it can be discarded and disregarded in both planning and learning.This idea, commonly
known as action elimination (AE), was proposed by MacQueen (1966) in thecontext of planning
when the MDP parameters are known. In the planning case AE serves two purposes: reduce the size
of the action sets to be searched at every iteration; identify optimal policies when there is a unique
optimal policy. (In value iteration this is the only way to reach optimal policy ratherthanε-optimal
policy.) AE procedures are standard practice in solving large practical MDPs and are considered
state-of-the-art; see Puterman (1994) for more details. We consider AE inthelearningcontext when
the model is not known a-priori.

In many applications the computational power is available but sampling of the environment is
expensive. By eliminating sub-optimal actions early in the learning process,the total amount of
sampling is reduced, leading to spending less time on estimating the parameters of sub-optimal
actions. The main motivation for applying AE in RL is reducing the amount of samples needed
from the environment. In addition to that, AE in RL enjoys the same advantages as in MDPs -
convergence rate speedup and possibility to find an optimal policy (rather thanε-optimal).

Overview of the paper

After defining the settings in Section 2, we consider the MAB problem in Section3. We start from
a naive algorithm for the MAB problem, and present two improved algorithms.The first algorithm
in the bandit settings,Successive Elimination, has the potential to exhibit an improved behavior in
cases where the differences between the expected rewards of the optimal arm and sub-optimal arms
are much larger thanε. The second algorithm,Median Elimination, achieves a better dependence
on the number of arms. Namely, the total number of arm trials isO(n/ε2 log(1/δ)), which improves
the naive bound by a factor of logn, and matches the lower bounds given in Mannor and Tsitsiklis
(2004).

In Section 4 we consider AE in RL. The underlying idea is to maintain upper andlower estimates
of the value (or Q) function. When the expected upper estimate of the returnof a certain action falls
below the expected lower estimate of another action, the obviously inferior action is eliminated. We
suggest both, a model-based and a Q-learning style AE algorithms. The upper and lower bounds are
based on a large deviations inequality, so that when an action is eliminated, it is not optimal with
high probability.

Stopping conditions that are based on generic convergence rate bounds (as in Even-Dar and
Mansour, 2003) are overly conservative. We suggest a stopping time based on the difference be-

1081

EVEN-DAR, MANNOR AND MANSOUR

tween the upper and lower bounds of the value (or Q) function. We show that if the difference is
small, then the greedy policy with respect to the lower estimate is almost optimal.

In Section 5 we present the results of several experiments with AE in toy problems as well as
in non-trivial problems. Significant speedup with negligible computational overhead is observed as
compared toε-greedy Q-learning.

2. Model and Preliminaries

In this section we define the models considered in this paper. We start from the MAB model in
Section 2.1. We then describe the MDP model in Section 2.2. While both models arewell studied
we prefer to recapitulate them in the PAC setup, to avoid confusion. We finallyrecall Hoeffding’s
inequality which is a central tool in this work in Section 2.3.

2.1 Multi-Armed Bandit

The model is comprised of a set of armsA with n = |A|. When sampling arma∈ A a reward which
is a random variableR(a) is received. We assume that the reward is binary, i.e., for every arma∈ A
the rewardR(a) ∈ {0,1} (all the results apply without change if the reward is bounded in[0,1] and
in general as long as the reward is bounded with appropriate modifications). Denote the arms by
a1, · · · ,an andpi = IE[R(ai)]. For simplicity of notations we enumerate the arms according to their
expected rewardp1 > p2 > ... > pn.

An arm with the highest expected reward is called thebest arm, and denoted bya∗, and its
expected rewardr∗ is theoptimal reward. An arm whose expected reward is strictly less thanr∗,
the expected reward of the best arm, is called anon-best arm. An arma is called anε-optimal arm
if its expected reward is at mostε from the optimal reward, i.e., IE[R(a)] ≥ r∗− ε.

An algorithm for the MAB problem, at each time stept, samples an armat and receives a
rewardrt (distributed according toR(at)). When making its selection the algorithm may depend on
the history (i.e., the actions and rewards) up to timet −1. Eventually the algorithm must commit to
a single arm and select it.

Next we define the desired properties of an algorithm formally.

Definition 1 An algorithm is a(ε,δ)-PAC algorithm for the multi armed bandit withsample com-
plexity T, if it outputs anε-optimal arm, a′, with probability at least1−δ, when it terminates, and
the number of time steps the algorithm performs until it terminates is bounded by T.

Remark 2 The MAB algorithm may terminate beforeT steps passed. The sample complexity we
consider is the complexity of theworst trajectory. The expected sample complexity (where the
expectation is taken with respect to both the model and the algorithm) was considered in Mannor
and Tsitsiklis (2004). The expected sample complexity behaves likeΩ((n+ log(1/δ))/ε2), which
is different than the complexity we prove below in Theorem 10. We note that the running time of
the algorithm from Mannor and Tsitsiklis (2004) is not bounded in the worstcase.

2.2 Markov Decision Processes

We define an MDP as follows:

1082

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

Definition 3 A Markov Decision process (MDP) M is a 4-tuple(S,A,P,R), where S is a set of the
states, A is a set of actions, Pa

s,s′ is the transition probability from state s to state s′ when performing
action a∈ A in state s, and R(s,a) is the reward received when performing action a in state s.

A strategy for an MDP assigns, at each timet, for each states a probability for performing
actiona∈ A, given a historyFt−1 = {s1,a1, r1, ...,st−1,at−1, rt−1} which includes the states, actions
and rewards observed until timet − 1. While executing a strategyπ we perform at timet action
at in statest and observe a rewardrt (distributed according toR(st ,at)), and the next statest+1

distributed according toPat
st ,·. We combine the sequence of rewards into a single value called the

return. Our goal is to maximize the return. In this work we focus on thediscounted return, which
has a parameterγ ∈ (0,1), and the discounted return of policyπ is Vπ = ∑∞

t=0 γtrt , wherert is the
reward observed at timet. We also consider thefinite horizonreturn,Vπ = ∑H

t=0 rt for a given
horizonH.

We assume thatR(s,a) is non-negative and bounded byRmax, i.e., for everys,a : 0≤ R(s,a) ≤
Rmax. This implies that the discounted return is bounded byVmax = Rmax/(1− γ); for the finite
horizon the return is bounded byHRmax. We define a value function for each states, under policy
π, asVπ(s) = IEπ[∑∞

i=0 r iγi], where the expectation is over a run of policyπ starting at states. We
further denote the state-action value function as using actiona in statesand then followingπ as:

Qπ(s,a) = R(s,a)+ γ∑
s′

Pa
s,s′V

π(s′).

Similarly, we define the value functions for the finite horizon model.
Let π∗ be an optimal policy which maximizes the return from any start state. For discounted

return criterion, there exists such a policy which is deterministic and stationary(see, e.g., Put-
erman, 1994). This implies that for any policyπ and any states we haveVπ∗

(s) ≥ Vπ(s), and
π∗(s) = argmaxa(R(s,a) + γ(∑s′ P

a
s,s′V

π∗
(s′)). We useV∗ and Q∗ for Vπ∗

and Qπ∗
, respectively.

We say that a policyπ is ε-optimal if ‖V∗−Vπ‖∞ ≤ ε. We also define the policyGreedy(Q) as
the policy that prescribes in each state the action that maximizes theQ-function in the state, i.e.,
π(s) = argmaxaQ(s,a).

For a given trajectory let:Ts,a be the set of times in which we perform actiona in states and
Ts,a,s′ be a subset ofTs,a in which we reached states′. Also, #(s,a, t) is the number of times action
a is performed in states up to timet, i.e., |Ts,a∩{1,2,3, . . . , t}|. We similarly define #(s,a,s′, t) as
|Ts,a,s′ ∩{1,2,3, . . . , t}|. Next we define the empirical model at timet. Given that #(s,a, t) > 0 we
define the empirical next state distribution at timet as

P̂a
s,s′ =

#(s,a,s′, t)
#(s,a, t)

and R̂(s,a) =
∑t∈Ts,a rt

#(s,a, t)
.

If #(s,a, t) = 0 the empirical model and the reward can be chosen arbitrarily. We define the expec-
tation of the empirical model aŝIEs,s′,a[V(s′)] = ∑s′∈SP̂a

s,s′V(s′). To simplify the notations we omit

s,a in the notationŝIEs′ whenever evident.

2.3 A Concentration Bound

We often use large deviation bounds in this paper. Since we assume boundedness we can rely on
Hoeffding’s inequality.

1083

EVEN-DAR, MANNOR AND MANSOUR

Lemma 4 (Hoeffding, 1963) Let X be a set, D be a probability distribution on X, and f1, ..., fm be
real-valued functions defined on X with fi : X → [ai ,bi] for i = 1, ...,m, where ai and bi are real
numbers satisfying ai < bi . Let x1, . . . ,xm be independent identically distributed samples from D.
Then we have the following inequality

P

[

1
m

m

∑
i=1

fi(xi)−
(

1
m

m

∑
i=1

Z bi

ai

fi(x)D(x)

)

≥ ε

]

≤ e
− 2ε2m2

∑m
i=1(bi−ai)

2

P

[

1
m

m

∑
i=1

fi(xi)−
(

1
m

m

∑
i=1

Z bi

ai

fi(x)D(x)

)

≤−ε

]

≤ e
− 2ε2m2

∑m
i=1(bi−ai)

2
.

Remark 5 We note that the boundedness assumption is not essential and can be relaxed in certain
situations. We also note that sometimes tighter bounds can be obtained using the relative Chernoff
bound (Angluin and Valiant, 1979).

3. PAC Bounds for the Multi-Armed Bandit Problem

In this section we investigate an(ε,δ)-PAC algorithms for the MAB problem. Such algorithms
are required to output with probability 1− δ anε-optimal arm. We start with a naive solution that
samples each arm 1/(ε/2)2 ln(2n/δ) and picks the arm with the highest empirical reward. The
sample complexity of this naive algorithm isO(n/ε2 log(n/δ)). The naive algorithm is described
in Algorithm 1. In Section 3.1 we consider an algorithm that eliminates one arm after the other.
In Section 3.2 we finally describe the Median Elimination algorithm whose sample complexity is
optimal in the worst case.

Input : ε > 0, δ > 0
Output : An arm
foreach Arm a∈ A do

Sample itℓ = 4
ε2 ln(2n

δ) times;
Let p̂a be the average reward of arma;

end
Outputa′ = argmaxa∈A{p̂a};

Algorithm 1: Naive Algorithm

Theorem 6 The algorithmNaive(ε,δ) is an (ε,δ)-PAC algorithm with arm sample complexity
O
(

(n/ε2) log(n/δ)
)

.

Proof The sample complexity is immediate from the definition of the algorithm. We now prove it
is an(ε,δ)-PAC algorithm. Leta′ be an arm for which IE(R(a′)) < r∗− ε. We want to bound the
probability of the event ˆpa′ > p̂a∗ .

P(p̂a′ > p̂a∗) ≤ P
(

p̂a′ > IE[R(a′)]+ ε/2 or p̂a∗ < r∗− ε/2
)

≤ P
(

p̂a′ > IE[R(a′)]+ ε/2
)

+P(p̂a∗ < r∗− ε/2)

≤ 2exp(−2(ε/2)2ℓ) ,

1084

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

where the last inequality uses the Hoeffding inequality. Choosingℓ = (2/ε2) ln(2n/δ) assures that
P(p̂a′ > p̂a∗) ≤ δ/n. Summing over all possiblea′ we have that the failure probability is at most
(n−1)(δ/n) < δ.

3.1 Successive Elimination

The successive elimination algorithm attempts to sample each arm a minimal number oftimes
and eliminate the arms one after the other. To motivate the successive elimination algorithm, we
first assume that the expected rewards of the arms are known, but the matching of the arms to the
expected rewards is unknown. Let∆i = p1− pi > 0. Our aim is to sample armai for (1/∆2

i) ln(n/δ)
times, and then eliminate it. This is done in phases. Initially, we sample each arm(1/∆2

n) ln(n/δ)
times. Then we eliminate the arm which has the lowest empirical reward (and never sample it again).
At the i-th phase we sample each of then− i surviving arms

O

((

1

∆2
n−i

− 1

∆2
n−i+1

)

log(
n
δ
)

)

times and then eliminate the empirically worst arm. The algorithm described as Algorithm 2 below.
In Theorem 7 we prove that the algorithm is(0,δ)-PAC and compute its sample complexity.

Input : δ > 0, bias of armsp1, p2, . . . , pn

Output : An arm

SetS= A; ti = (8/∆2
i) ln(2n/δ); andtn+1 = 0, for every arma: p̂a = 0, i = 0;

while i < n−1 do
Sample every arma∈ S for tn−i − tn−i+1 times;
Let p̂a be the average reward of arma (in all rounds);
SetS= S\{amin}, whereamin = argmina∈S{p̂a}, i = i +1;

end
Output S;

Algorithm 2: Successive Elimination with Known Biases

Theorem 7 Suppose that∆i > 0 for i = 2,3, . . . ,n. Then the Successive Elimination with Known
Biases algorithm is an(0,δ)-PAC algorithm and its arm sample complexity is

O

(

log(
n
δ
)

n

∑
i=2

1

∆2
i

)

. (1)

Proof The sample complexity of the algorithm is as follows. In the first round we samplen arms
tn times. In the second round we samplen−1 armstn−1− tn times. In thekth round (1≤ k < n)
we samplen− k+ 1 arms fortn−k − tn−k+1 times. The total number of arms samples is therefore
t2 +∑n

i=2 ti which is of the form (1).
We now prove that the algorithm is correct with probability at least 1−δ. Consider first a simplified

1085

EVEN-DAR, MANNOR AND MANSOUR

algorithm which is similar to the naive algorithm, suppose that each arm is pulled 8/(∆2
2) ln(2n/δ)

times. For every 2≤ i ≤ n−1 we define the event

Ei =
{

p̂1
t j ≥ p̂i

t j |∀t j s.t. j ≥ i
}

,

wherep̂i
t j is the empirical value theith arm at timet j . If the eventsEi hold for all i > 1 the algorithm

is successful.

P[not(Ei)] ≤
n

∑
j=i

P[p̂n
t j < p̂i

t j]

≤
n

∑
j=i

2exp(−2(∆i/2)2t j) ≤
n

∑
j=i

2exp(−2(∆i/2)28/∆2
j ln(2n/δ))

≤
n

∑
j=i

2exp(− ln(4n2/δ2))

≤ (n− i +1)δ2/n2 ≤ δ
n
.

Using the union bound over allEi ’s we obtain that the simplified algorithm satisfies allEi with
probability at least 1− δ. Consider the original setup. If arm 1 is eliminated at timet j for some is
implies that some armi < j has higher empirical value at timet j . The probability of failure of the
algorithm is bounded by the probability of failure in the simplified setting.

Next, we relax the requirement that the expected rewards of the arms are known in advance, and
introduce the Successive Elimination algorithm that works with any set of biases. The algorithm we
present as Algorithm 3 finds the best arm (rather thanε-best) with high probability. We later explain
in Remark 9 how to modify it to be an(ε,δ)-PAC algorithm.

Input : δ > 0
Output : An arm
Sett = 1 andS= A;
Set for every arma: p̂1

a = 0;
Sample every arma∈ Sonce and let ˆpt

a be the average reward of arma by timet;
repeat

Let p̂t
max= maxa∈S p̂t

a andαt =
√

ln(cnt2/δ)/t, wherec is a constant;
foreach arma∈ Ssuch that ˆpt

max− p̂t
a ≥ 2αt do

setS= S\{a};
end
t = t +1;

until |S| > 1;

Algorithm 3: Successive elimination with unknown biases

Theorem 8 Suppose that∆i > 0 for i = 2,3, . . . ,n. Then the Successive Elimination algorithm
(Algorithm 3) is a(0,δ)-PAC algorithm, and with probability at least1−δ the number of samples

1086

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

is bounded by

O

(

n

∑
i=2

ln(n
δ∆i

)

∆2
i

)

.

Proof Our main argument is that, at any timet and for any actiona, the observed probability ˆpt
a is

within αt of the true probabilitypa. For any timet and actiona∈ St we have that,

P[|p̂t
a− pa| ≥ αt] ≤ 2e−2α2

t t ≤ 2δ
cnt2

.

By taking the constantc to be greater than 4 and from the union bound we have that with probability
at least 1− δ/n for any timet and any actiona ∈ St , |p̂t

a− pa| ≤ αt . Therefore, with probability
1−δ, the best arm is never eliminated. Furthermore, sinceαt goes to zero ast increases, eventually
every non-best arm is eliminated. This completes the proof that the algorithm is(0,δ)-PAC.

It remains to compute the arm sample complexity. To eliminate a non-best armai we need to
reach a timeti such that,

∆̂ti = p̂ti
a1
− p̂ti

ai
≥ 2αti .

The definition ofαt combined with the assumption that|p̂t
a− pa| ≤ αt yields that

∆i −2αt = (p1−αt)− (pi +αt) ≥ p̂1− p̂i ≥ 2αt ,

which holds with probability at least 1− δ
n for

ti = O

(

ln(n/δ∆i)

∆2
i

)

.

To conclude, with probability of at least 1− δ the number of arm samples is 2t2 + ∑n
i=3 ti , which

completes the proof.

Remark 9 One can easily modify the successive elimination algorithm so that it is(ε,δ)-PAC.
Instead of stopping when only one arm survives the elimination, it is possibleto settle for stopping
when either only one arm remains or when each of thek surviving arms were sampledO(1

ε2 log(k
δ)).

In the latter case the algorithm returns the best arm so far. In this case it is not hard to show that the
algorithm finds anε-optimal arm with probability at least 1−δ after

O

(

∑
i:∆i>ε

log(n
δ∆i

)

∆2
i

+
N(∆,ε)

ε2 log

(

N(∆,ε)
δ

)

)

,

whereN(∆,ε) = |{i | ∆i < ε}| is the number of arms which areε-optimal.

3.2 Median Elimination

The following algorithm substitutes the termO(log(1/δ)) for O(log(n/δ)) of the naive bound. The
idea is to eliminate the worst half of the arms at each iteration. We do not expectthe best arm to be
empirically “the best”, we only expect anε-optimal arm to be above the median.

1087

EVEN-DAR, MANNOR AND MANSOUR

Input : ε > 0,δ > 0
Output : An arm

SetS1 = A, ε1 = ε/4, δ1 = δ/2, ℓ = 1. repeat
Sample every arma∈ Sℓ for 1/(εℓ/2)2 log(3/δℓ) times, and let ˆpℓ

a denote its empirical
value;
Find the median of ˆpℓ

a, denoted bymℓ;
Sℓ+1 = Sℓ \{a : p̂ℓ

a < mℓ};
εℓ+1 = 3

4εℓ; δℓ+1 = δℓ/2; ℓ = ℓ+1;
until |Sℓ| = 1;

Algorithm 4: Median Elimination

Theorem 10 The Median Elimination(ε,δ) algorithm is an(ε,δ)-PAC algorithm and its sample
complexity is

O

(

n
ε2 log

(

1
δ

))

.

First we show that in theℓ-th phase the expected reward of the best arm inSℓ drops by at most
εℓ.

Lemma 11 For theMedian Elimination(ε,δ) algorithm we have that for every phaseℓ:

P[max
j∈Sℓ

p j ≤ max
i∈Sℓ+1

pi + εℓ] ≥ 1−δℓ.

Proof Without loss of generality we look at the first round and assume thatp1 is the reward of the
best arm. We bound the failure probability by looking at the eventE1 = {p̂1 < p1−ε1/2}, which is
the case that the empirical estimate of the best arm is pessimistic. Since we sample sufficiently, we
have thatP[E1] ≤ δ1/3.

In caseE1 does not hold, we calculate the probability that an armj which is not anε1-optimal
arm is empirically better than the best arm.

P[p̂ j ≥ p̂1 | p̂1 ≥ p1− ε1/2] ≤ P[p̂ j ≥ p j + ε1/2 | p̂1 ≥ p1− ε1/2] ≤ δ1/3

Let #bad be the number of arms which are notε1-optimal but are empirically better than the best
arm. We have that IE[#bad| p̂1 ≥ p1− ε1/2] ≤ nδ1/3. Next we apply Markov inequality to obtain,

P[#bad≥ n/2 | p̂1 ≥ p1− ε1/2] ≤ nδ1/3
n/2

= 2δ1/3.

Using the union bound gives us that the probability of failure is bounded byδ1.

Next we prove that arm sample complexity is bounded byO((n/ε2) log(1/δ)).

Lemma 12 The sample complexity of theMedian Elimination(ε,δ) is O
(

(n/ε2) log(1/δ)
)

.

Proof The number of arm samples in theℓ-th round is 4nℓ log(3/δℓ)/ε2
ℓ . By definition we have that

1088

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

1. δ1 = δ/2 ; δℓ = δℓ−1/2 = δ/2ℓ

2. n1 = n ; nℓ = nℓ−1/2 = n/2ℓ−1

3. ε1 = ε/4 ; εℓ = 3
4εℓ−1 =

(

3
4

)ℓ−1 ε/4

Therefore we have

log2(n)

∑
ℓ=1

nℓ log(3/δℓ)

(εℓ/2)2 = 4
log2(n)

∑
ℓ=1

n/2ℓ−1 log(2ℓ3/δ)

((3
4)ℓ−1ε/4)2

= 64
log2(n)

∑
ℓ=1

n(
8
9
)ℓ−1(

log(1/δ)

ε2 +
log(3)

ε2 +
ℓ log(2)

ε2)

≤ 64
nlog(1/δ)

ε2

∞

∑
ℓ=1

(
8
9
)ℓ−1(ℓC′ +C) = O(

nlog(1/δ)

ε2)

Now we can prove Theorem 10.
Proof From Lemma 12 we have that the sample complexity is bounded byO

(

nlog(1/δ)/ε2
)

. By
Lemma 11 we have that the algorithm fails with probabilityδi in each round so that over all rounds
the probability of failure is bounded by∑log2(n)

i=1 δi ≤ δ. In each round we reduce the optimal reward

of the surviving arms by at mostεi so that the total error is bounded by∑log2(n)
i=1 εi ≤ ε.

4. Learning in MDPs

In this section we consider algorithms for the RL problem, which are based onthe MAB algorithms
presented above. We start from model-based learning in Section 4.1, where the parameters of the
models are learned. We describe algorithms which are based on the successive elimination algo-
rithm and provide stopping conditions for these algorithms. In Section 4.2 we consider model-free
learning and suggest a version of the Q-learning algorithm that incorporates action elimination and
stopping conditions. In Section 4.3 we analyze the batched sampling setting of Kearns and Singh
(2002) and provide a mechanism that can use any(ε,δ)-MAB algorithm to enhance the performance
of the Phased Q-learning introduced in Kearns and Singh (2002). We also provide a matching lower
bound.

4.1 Model-Based Learning

In this section we focus on model-based learning. In model-based methods,we first learn the model,
i.e., estimate the immediate reward and the next state distribution. Then by either value iteration,
policy iteration, or linear programming on the learned (empirical) model, we find the exact optimal
policy for the empirical model. If enough exploration is done, this policy is almost optimal for the
true model. We note that there is an inherent difference between the finite horizon and the infinite
discounted return. Technically, the finite horizon return is simpler than the discounted return, as one
can apply the concentration inequality directly. We provide model-based algorithms for both cases.

1089

EVEN-DAR, MANNOR AND MANSOUR

4.1.1 FINITE HORIZON

Let us first recall the classical optimality equations for finite horizon:

VH(s) = max
a

{R(s,a)+ IEs′ [V
H−1(s′)]}, H > 0

V0(s) = max
a

R(s,a),

whereVH(s) is the optimal value function for horizonH. We often abuse notation by using IEs′

instead of IEs′,a. Given the empirical model by timet we define the upper estimateVδ, which will

be shown to satisfy for every horizonk and every states, V
k
δ(s) ≥Vk(s) with high probability. For

horizonH we define:

V
H
δ (s) = max

a

{

R̂(s,a)+ ÎEs′ [V
H−1
δ (s′)]+HRmax

√

ln(c|S||A|H2

δ)

|Ts,a|
}

, H > 0 (2)

V
0
δ(s) = max

a

{

R̂(s,a)+Rmax

√

ln(c|S||A|
δ)

|Ts,a|
}

, (3)

for some constantc ≥ 4. Similarly to the upper boundV
H
δ , a lower bound may be defined where

theRmax is replaces by−Rmax. We call this estimate the lower estimateVH
δ . The following Lemma

proves thatV
H
δ is an upper estimation for any horizon and thatVH

δ is a lower estimation.

Theorem 13 We have thatV
k
δ(s) ≥Vk(s) ≥Vk

δ(s) for all states s and horizons k, with probability
at least1−δ.

Proof We prove the claim by induction. For the base of the induction, by a simple use of Hoeffding
inequality we have that for every statesV

0
δ(s)≥maxa R̂(s,a) with probability 1−δ/(c|S||A|) . Next

we assume that the claim holds fori ≤ k and prove fork+1 and for every actiona. By definition
V

k+1
δ (s) satisfies for everya that

V
k+1
δ (s) ≥ R̂(s,a)+ ÎEs′ [V

k
δ(s

′)]+(k+1)Rmax

√

ln(c|S||A|(k+1)2

δ)

|Ts,a|

≥ R̂(s,a)+ ÎEs′ [V
k(s′)]+(k+1)Rmax

√

ln(c|S||A|(k+1)2

δ)

|Ts,a| ,

where the second inequality follows from the inductive hypothesis. Note that Vk is not a random
variable, so we can bound the last expression using Hoeffding’s inequality. We arrive at:

P







R̂(s,a)+ ÎEs′ [V
k(s′)]+(k+1)Rmax

√

ln(c|S||A|(k+1)2

δ)

|Ts,a| < R(s,a)+ IEs′ [V
k(s′)]







≤ e

− ln(
c|S||A|(k+1)2

δ)|Ts,a|
(

(k+1)Rmax√
|Ts,a|

)2

((k+1)Rmax)2 =
δ

c|S||A|(k+1)2 .

1090

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

Therefore, we have that with high probability the following holds

V
k+1
δ (s) ≥ max

a
{R(s,a)+ ÎEs′ [V

k(s′)]+kRmax

√

ln(c|S||A|k2

δ)

|Ts,a| }

≥ max
a

{R(s,a)+ IEs′ [V
k(s′)]}

= Vk+1(s).

Using the union bound over all state-action pairs and all finite horizonsk, we obtain that the
failure probability is bounded byδ/2 for c≥ 4. Repeating the same argument for the lower estimate
and applying the union bound completes the proof.

Consequently, a natural early stopping condition is to stop sampling when‖VH −VH‖∞ < ε. We do
not provide an algorithm here, however a detailed algorithm will be given inthe following subsec-
tion.

4.1.2 DISCOUNTEDRETURN - INFINITE HORIZON

In this subsection, we provide upper and lower estimates of the value function V for the infinite
horizon case. The optimal value is the solution of the set of the equations:

V∗(s) = max
a

{R(s,a)+ γIEs′ [V
∗(s′)]}, s∈ S.

As in Subsection 4.1.1, we provide an upper value functionVδ, which satisfies with high probability
Vδ(s) ≥V∗(s). We defineV

t
δ at timet as the solution of the set of equations:

V
t
δ(s) = max

a

{

R̂(s,a)+ γÎEs′ [V
t
δ(s

′)]+Vmax

√

ln(ct2|S| |A|
δ)

|Ts,a|)
}

for some positive constantc andQ
t
δ as:

Q
t
δ(s,a) = R̂(s,a)+ γÎEs′ [Vδ(s

′)]+Vmax

√

ln(ct2|S| |A|
δ)

|Ts,a| .

Similarly, we defineVt
δ andQt

δ as:

Vt
δ(s) = max

a

{

R̂(s,a)+ γÎEs′Vδ(s
′)−Vmax

√

ln(ct2|S| |A|
δ)

|Ts,a|)
}

Qt
δ(s,a) = R̂(s,a)+ γÎEs′ [V

t
δ(s

′)]−Vmax

√

ln(ct2|S| |A|
δ)

|Ts,a| .

The next lemma shows that with high probability the upper and lower estimations are indeed
correct.

Lemma 14 With probability at least1− δ we have thatQ
t
δ(s,a) ≥ Q∗(s,a) ≥ Qt

δ(s,a) for every
state s, action a and time t.

1091

EVEN-DAR, MANNOR AND MANSOUR

Proof Suppose we run a value iteration algorithm on the empirical model at timet. LetV
t,k
δ be the

kth iteration of the value function algorithm at timet, and letQ
t,k
δ be the associated Q-function, that

is

Q
t,k
δ (s,a) = R̂(s,a)+ γÎEs′ [V

t,k
δ (s′)]+Vmax

√

ln(ct2|S||A|
δ)

|Ts,a| .

Assume that we start withV
t,0
δ = V∗. (The use ofV∗ is restricted to the proof and not used in the

algorithm.) We need to prove thatQ
t
δ(s,a) ≥ Q∗(s,a) for everys anda. Note that since the value

iteration converges,Q
t,k
δ converges toQ

t
δ. We prove by induction on the number of the iterations

that by takingV
t,0
δ =V∗, with high probability for everyk we have thatQ

t,k
δ ≥Q

t,k−1
δ , i.e.,P[∀k Q

k
δ ≥

Q
k−1
δ]≥ 1− δ

ct2 . For the basis, sinceV∗ is not a random variable we can apply Hoeffding’s inequality
and obtain that for every state action pair(s,a)

P
{

R̂(s,a)+ γÎEs′ [V
∗(s′)]+Vmax

√

ln(ct2|S||A|
δ)

|Ts,a| < R(s,a)+ γIEs′ [V
∗(s′)]

}

≤ e− ln(ct2|S||A|
δ) =

δ
ct2|S||A| .

SinceV
t,0
δ (s) = V∗ we have thatQ

t,1
δ (s,a) = R̂(s,a)+ γÎEs′ [V

t,0
δ (s′)]+Vmax

√

ln(ct2|S||A|
δ)

|Ts,a| . Therefore,

Q
t,1
δ ≥ Q

t,0
δ with probability 1− δ

ct2 . For the induction step, we assume that the claim holds fori < k
and prove fork.

Q
t,k
δ (s,a)−Q

t,k−1
δ (s,a) = γÎEs′ [V

t,k−1
δ (s′)−V

t,k−2
δ (s′)].

SinceV
t,k−1
δ (s′) = maxaQ

t,k−1
δ (s′,a) we have by the induction that for everys,

Vt,k−1
δ (s) = max

a
Q

t,k−1
δ (s,a) ≥ max

a
Q

t,k−2
δ (s,a) = Vt,k−2

δ (s).

So thatQ
t,k
δ −Q

t,k−1
δ ≥ 0. We conclude thatP[Qδ ≥ Q∗] ≥ 1− δ

ct2 . Repeating the same argument
for the lower estimate,Qδ, and applying the union bound over both and over all times completes the
proof for the appropriatec.

The AE procedure is demonstrated in the following algorithm, which also supplies a stopping
condition for sampling the model and eliminates actions when they are sub-optimalwith high prob-
ability.

1092

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

Input : MDP M, ε > 0, δ > 0
Output : A policy for M
Choose arbitrarily an initial states0, let t = 0,
and letU0 = {(s,a)|s∈ S,a∈ A}
repeat

At statest perform any actiona s.t. (st ,a) ∈Ut

Receive a rewardrt , and a next statest+1

Compute,Qδ,Qδ from all the samples
t = t +1
Ut = {(s,a)|Qδ(s,a) ≥Vδ(s)}

until ∀(s,a) ∈U |Qδ(s,a)−Qδ(s,a)| < ε(1−γ)
2 ;

return Greedy(Qδ)

Algorithm 5: Model-Based AE Algorithm

A direct corollary from Lemma 14, is a stopping time condition to the Model-Basedalgorithm
using the following Corollary.

Corollary 15 [Singh and Yee (1994)] If̃Q is a function such that|Q̃(s,a)−Q∗(s,a)| ≤ ε for all
s∈ S and a∈ A. Then for all s

V∗(s)−V π̃(s) ≤ 2ε
1− γ

,

whereπ̃ = Greedy(Q̃).

Theorem 16 Supposed the Model-Based AE Algorithm terminates. Then the policy,π, the algo-
rithm returns isε-optimal with probability at least1−δ.

Proof By Lemma 14 we know that with probability at least 1−δ for everys, a and timet we have
thatQδ(s,a) ≤ Q∗(s,a) ≤ Qδ(s,a). Therefore, with probability of at least 1− δ the optimal action
has not been eliminated in any state in any timet. Furthermore, any actionb in states that has not
been eliminated satisfiesQ∗(s,b)−Qδ(s,b) ≤ Qδ(s,b)−Qδ(s,b) ≤ ε(1− γ)/2. The result follows
by Corollary 15.

4.2 Model-Free Learning

In this section we describe a model-free algorithm. We use two functionsQt andQ
t
, which provide

lower and upper estimations onQ∗, respectively. We use these functions to derive an asynchronous
algorithm, which eliminates actions and supplies stopping condition. This algorithmrequires space
which is proportional to the space used by Q-learning and converges under the same conditions.
Let us first recall the Q-learning algorithm (Watkins, 1989). The Q-learning algorithm estimates the
state-action value function (for discounted return) as follows:

Q0(s,a) = 0,

Qt+1(s,a) = (1−αt(s,a))Qt(s,a)+αt(s,a)(rt(s,a)+ γVt(s′)),

1093

EVEN-DAR, MANNOR AND MANSOUR

wheres′ is the state reached from stateswhen performing actionaat timet, andVt(s)= maxaQt(s,a).
Setαt(s,a) = 1/#(s,a, t) for t ∈ Ts′,a′ and 0 otherwise.1 We define the upper estimation process as:

Q
0
δ(s,a) = Vmaxln(

c|S||A|
δ

),

Q
t+1
δ (s,a) = (1−αt(s,a))Q

t
δ(s,a)+αt(s,a)

(

R(s,a)+ γVt
δ(s

′)+β(#(s,a, t))
)

,

wherec > 4 ands′ is the state reached from states when performing actiona at timet, V
t
δ(s) =

maxaQ
t
δ(s,a) and the functionβ, which maintains the upper estimate interval is defined as:

β(k) = k

(

√

k ln(ck2|S||A|/δ)− (1−1/k)
√

(k−1) ln(c(k−1)2|S||A|/δ)

)

Vmax.

Analogously, we define the lower estimateQδ as :

Q0
δ(s,a) = −Vmaxln(

c|S||A|
δ

),

Qt+1
δ (s,a) = (1−αt(s,a))Qt

δ(s,a)+αt(s,a)
(

R(s,a)+ γVt
δ(s

′)−β(#(s,a, t))
)

,

whereVδ(s) = maxaQδ(s,a). We claim that these processes converge almost surely toQ∗. (The
proof appears in Appendix A.)

Proposition 17 If every state-action pair is performed infinitely often then the upper (lower)esti-
mation process,Q

t
δ (Qt

δ), converges to Q∗ with probability one.

The following Proposition claims thatQ
t
δ upper boundsQ∗ and Qt

δ lower boundsQ∗ with high
probability.

Proposition 18 With probability at least1− δ we have that for every state action pair(s,a) and
time t:

Q
t
δ(s,a) ≥ Q∗(s,a) ≥ Qt

δ(s,a).

Proof We start by defining disjoints events such that their union is the event ofQ not always being
an upper bound ofQ∗. Let

Ek,s,a = {The first time for whichQ is not an upper bound of

Q∗ is whena is performed at statesat thekth time}.

Note that ifQ does not upper boundQ∗ it implies that one of the eventsEk,s,a occurred. Next we
bound the probability that an eventEk,s,a happens. Note that the onlyQ value that has changed
wherea was performed art thekth time at states is Q(s,a). We lett ′ be the time ofEk,s,a and note
thatQ

t
(s′,a′) ≥ Q∗(s,a) for anyt < t ′.

P(Ek,s,a) = P
(

Q
t ′
(s,a)−Q∗(s,a) < 0

)

1. This particular learning rate is especially convenient, since the recurrence Xt = (1− 1/t)Xt−1 + (1/t)θt has the
solutionXt = (1/t)∑t

i=1 θi .

1094

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

Input : MDP M, ε > 0, δ > 0
Output : A policy for M

For every state action(s,a):
Q(s,a) = Vmaxln(c|S||A|

δ)

Q(s,a) = −Vmaxln(c|S||A|
δ)

#(s,a) = 1
Choose an arbitrary initial states
repeat

Let U(s) = {a|Q(s,a) ≥V(s)}
choose arbitrarily actiona∈U(s), perform it and observe the next states′

Q(s,a) := (1− 1
#(s,a))Q(s,a)+ 1

#(s,a)

(

R(s,a)+ γV(s′)+β(#(s,a))
)

Q(s,a) := (1− 1
#(s,a))Q(s,a)+ 1

#(s,a)

(

R(s,a)+ γV(s′)−β(#(s,a))
)

#(s,a) := #(s,a)+1; s= s′

until ∀s∈ S ∀a∈U(s) |Q(s,a)−Q(s,a)| < ε(1−γ)
2 ;

return Greedy(Q)

Algorithm 6: Model-Free AE Algorithm

= P

(

1
k

k

∑
i=1

(r i + γVti (si)+β(i))−Q∗(s,a) < 0

)

≤ P

(

1
k

k

∑
i=1

(r i + γV∗(si)+β(i))−Q∗(s,a) < 0

)

≤ δ
c|S||A|k2 ,

where we could apply Hoeffding’s inequality sinceV∗ is not a random variable. Now taking the
union bound over all pairs(s,a) and timesk completes the proof for the upper estimate. A similar
argument for the lower estimate completes the proof.

We combine the upper and lower estimates to an algorithm, which eliminates sub-optimal ac-
tions whenever possible. Furthermore, the algorithm supplies a stopping condition that assures a
near optimal policy. The model free AE algorithm is described in Algorithm 6.

A direct corollary from Proposition 18 is a stopping condition to the model free AE algorithm.
The following corollary follows from Corollary 15 and its proof is similar to the proof of Theorem
16.

Corollary 19 Suppose the Model-Free AE Algorithm terminates. Then the policy, it returns is ε-
optimal with probability at least1−δ.

4.3 MAB Phased Q-learning Algorithm

In contrast to previous sections concerning learning in MDPs, we restrict the setup in this section.
In this limited setup we can fully exploit the connection between the MAB problem and learning

1095

EVEN-DAR, MANNOR AND MANSOUR

in MDPs. The setup is that of parallel sampling where the decision maker can sample every state
and action pair, as opposed to the typical Q-learning setup where a single trajectory is followed.
We will focus on the phased Q-learning algorithm Kearns and Singh (2002) which partitions the
learning to phases. We will use a MAB black-box to perform the updates for each state and phase
of the phased Q-learning algorithm. Although the parallel sampling model is nota realistic model it
is often considered in theory as a relaxation of the MDP model which still captures many important
aspects of the original problem; see Kearns and Singh (2002), Szepesvri and Munos (2005). The
parallel sampling model can represent a situation where sampling from different states is very cheap
(for example, when a simulator is available), so there is no real need to followa single trajectory. In
this case, reducing the number of samples needed for finding an optimal (orapproximately optimal)
policy is the main concern.

In phased Q-learning the value ofVk(s) is fixed during thekth phased and updated only at the
end of the phase. This implies that for every state and action(s,a) we can define a random variable
Ys(a) whose value isR(s,a)+ γVk(s′), whereR(s,a) is the random variable representing the reward
ands′ is distributed usingPa

s,s′ .
Our aim is to find, at each state, the action that maximizes the expected reward,and estimate

its expected reward, where the rewards areYs(a). The phased Q-Learning can now be viewed
as using the naive algorithm for the MAB problem (Algorithm 1) in order to find the best arm.
In the following we show how, using more sophisticated MAB algorithms, one can improve the
convergence rate of the Phased Q-Learning.

Our algorithm uses any (ε,δ)-PAC Multi-armed bandit algorithm as a black box in the learning
process. In order to use the MAB algorithmB as, a black box, we define a simple interface, which
requires the following procedures:

• InitB(ε,δ) - Initialize the parameters ofB.

• GetArmB() - returns the arma thatB wants to sample next.

• U pdateB(a, r) - informsB the latest rewardr of arma.

• StopB(a,v) - returns TRUE ifB terminates, and in such a casea is the output ofB andv is its
estimated value. (We assume that on termination, with probability at least 1−δ, the arma is
anε-optimal arm and|r∗−v| ≤ ε.)

The MAB Phased Q-learning algorithm uses as a black box, an algorithmB for the MAB prob-
lem. It receives as input(ε,δ) and returns a policyπ which is ε-optimal with probability at least
1−δ.

Suppose that we have some (ε,δ)-PAC MAB algorithm B, and assumeB has arm sample com-
plexity TB(ε,δ). Namely, with probability 1− δ, algorithmB terminates after at mostTB(ε,δ) and
outputs a policyπ which isε-optimal. The following theorem computes the sample complexity of
MAB Phased Q-Learning algorithm as a function ofTB.

Theorem 20 Assume B is an (ε̂, δ̂)-PAC multi-armed bandit algorithm. Then the MAB Phased Q-
Learning(ε,δ) algorithm outputs a policyπ which isε-optimal policy with probability at least1−δ,
and has sample complexity of

T(ε,δ) = |S|TB(ε̂, δ̂) logγ(
ε̂

2Vmax
) = O

(|S|
1− γ

ln(
Vmax

(1− γ)ε
)TB

(

ε(1− γ)2

2
,

δ(1− γ)
|S| ln(Vmax/ε)

))

.

1096

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

Input : ε,δ > 0 andB a multi-armed bandit algorithm
Output : A policy

Let ε̂ = ε(1−γ)2

2 ; n = logγ(ε̂/2Vmax) = O(ln(Vmax
(1−γ)ε)/(1− γ)); δ̂ = δ

|S|n;
Initialize for everys∈ S: V0(s) = 0;
for i = 1 : n do

foreachs∈ Sdo
InitB(ε̂, δ̂);
repeat

a = GetArmB();
(s′, r) = sample(s,a);
r ′ = r + γVi(s′);
U pdateB(a, r ′);

until Stop(a,v) = TRUE;
Vi+1(s) = v; π(s) = a;

end
end

Algorithm 7: MAB Phased Q-Learning algorithm

First we show that in each phase the norm‖V∗−V‖∞ decreases.

Lemma 21 Assume B is an (ε̂, δ̂)-PAC multi-armed bandit algorithm, and consider the MAB Phased
Q-Learning(ε,δ) algorithm using B. Then with probability at least1−δ, for all k ≤ n, ‖V∗−Vk‖∞
is bounded by ε̂

1−γ +Vmaxγk.

Proof First we bound the probability thatB outputs an arm which is notε-optimal. We bound the
failure probability by using the union bound on all the invocations ofB. There are

|S|n = |S| logγ (ε̂/Vmax) = O

(

|S| ln(Vmax
(1−γ)ε)

1− γ

)

initializations of algorithmB and for each invocation the failure probability is bounded byδ/|S|n.
Thus, the failure probability is at mostδ.

Next, we show that the error contracts in every phase. We compare the value vector,Vk, with the
standard value iteration value vectorV̂k for the case of a known model (at the end of thek-th step).
Formally,

V̂k+1(s) = max
u

{IE[R(s,u)]+ γIEs′ [V̂k(s
′)]},

wheres′ is distributed according toPu
s,s′ andV̂0 = 0.

We show by induction on the number of phases, thatdk = ‖Vk− V̂k‖∞ ≤ ε̂
1−γ . The base of the

induction,t = 0, for every states we haved0 = |V0(s)− V̂0(s)| = 0. We assume that the induction
assumption holds fort < k and prove fork. Let ms,a denote the number of times the state action pair
(s,a) was sampled in thek-th iteration.

|Vk(s)−V̂k(s)| =
∣

∣

∣
max

u
[

1
ms,u

ms,u

∑
i=1

r(s,u)+ γVk−1(s
′
i)]

1097

EVEN-DAR, MANNOR AND MANSOUR

−max
a

[IE[R(s,a)]+ γ∑
s′

Pa
s,s′V̂k−1(s

′)]
∣

∣

∣

≤ max
ρ∈{−ε̂,ε̂}

∣

∣

∣
max

u
[IE[R(s,u)]+ γ∑

s′
Pu

s,s′Vk−1(s
′)]+ρ

−max
a

[IE[R(s,a)]+ γ∑
s′

Pa
s,s′V̂k−1(s

′)]
∣

∣

∣

≤ ε̂+max
a

∣

∣

∣
γ∑

s′
Pa

s,s′(Vk−1(s
′)−V̂k−1(s

′))
∣

∣

∣

≤ ε̂+ γdk−1

≤ ε̂+ γ(
ε̂

1− γ
) =

ε̂
1− γ

.

To conclude the proof note that for the value iteration we have that‖V̂k −V∗‖∞ ≤ γkVmax, where
V̂0 = 0 (see, e.g., Bertsekas and Tsitsiklis, 1995).

Lemma 22 When the MAB Phased Q-Learning algorithm terminates, the policyπ it returns is
ε-optimal with probability at least1−δ.

Proof By Lemma 21 we have that with probability at least 1− δ the difference‖Vk −V∗‖∞ ≤
ε̂

1−γ +Vmaxγk. Sinceε̂ = ε(1− γ)2/2, we have that‖Vk−V∗‖∞ ≤ ε(1− γ)/2+Vmaxγk. The lemma
follows from our choice ofn = logγ(ε(1− γ)/2Vmax).

We can now complete the proof Theorem 20.
Proof The correctness follows from Lemma 22. We bound the sample complexity as follows. By
definition, the MAB Phased Q-Learning algorithm samples at each state and action during every
phaseTB(ε̂, δ̂). By definition of the algorithm, the number of phases isn = O(ln(Vmax/ε̂)/(1− γ)),
and each phase is composed from|S| MAB instances. This completes the bound on the sample
complexity.

Applying the multi-armed bandit algorithms described in the previous sections wederive the
following corollary. We show that by using themedian eliminationalgorithm, the arm sample
complexity can be reduced by a factor of log(|A|).

Corollary 23 Let B be the median elimination algorithm. MAB Phased Q-Learning algorithm has
sample complexity

T(ε,δ) = O

(|S| |A|V2
max

(1− γ)5ε2 ln(
Vmax

(1− γ)ε
) ln(

|S| ln(Vmax/ε)
δ(1− γ)

)

)

.

Next we introduce an almost matching lower bound. Let us introduce some more notation before
we proceed. LetT denote the time until an RL algorithm stops (this may be in general a random
number). For a given RL algorithmL and a given MDPL we denote by IEL,M the expectation with
respect to randomization in both the algorithm and the MDP.

1098

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

Theorem 24 Let L be a learning algorithm for MDPs under the parallel sampling model. There
are constants C1,C2,ε0,δ0,γ0 such that for everyε ∈ (0,ε0), δ ∈ (0,δ0), andγ ∈ (0,γ0) if L returns
an ε-optimal policy with probability of at least1− δ for every MDP with discount factorγ there
exist an MDP M for which:

IEL,M [T] ≥C1
|S| |A|

(1− γ)2ε2 log

(

C2

δ

)

= Ω
(|S| |A|

(1− γ)2ε2 log(
1
δ
)

)

.

Proof Consider the following construction which was used in Theorem 1 of Mannor and Tsitsiklis
(2004) for the MAB problem. A MAB problem with|A| arms is given. We enumerate the arms
from 0 to|A|−1, and fixε̂ > 0. In each of the states one of the following hypotheses is true:

H0 : r(0) = 1/2+ ε̂ ; r(i) = 1/2 (i = 1,2, . . . , |A−1|),
and forℓ = 1,2, . . . , |A|−1:

Hℓ : r(0) = 1/2+ ε̂ ; r(i) = 1/2 (i = 1,2, . . . , |A−1|, i 6= ℓ) ; r(ℓ) = 1/2+2ε̂.

Let IEℓ be the expectation given than hypothesisHℓ is true, andA(s) the event that the algorithm errs
in states. In Lemma 4 in Mannor and Tsitsiklis (2004) it was proved that there are constantsc1 and
c2 such that for̂ε < ε̂0 every algorithm that can identify the true hypothesis with probability 1− δ̂
for all the hypotheses must satisfy that:

IE0[T] ≥ c1
|A|−1

ε̂2 log(
c2

δ̂
). (4)

We create the following set of MDPs. In each possible MDP there are|S| states and|A| actions in
each state. All the states are absorbing and have one of the aboveA hypotheses per state. The reward
in each state behaves according toH0 or one of theHℓ. (There are|A||S| possible MDPs.) We set
ε̂ = 2(1− γ)ε. We run algorithmL until termination. WhenL terminates it returns a policy which is
ε-optimal with probability of at least 1− δ. Since every state is absorbing, and by our choice ofε̂,
it implies that the right hypothesis was found in all states. Note that even ifL returns a randomized
policy, we will determine that the action with the highest reward is the best one (this is the reason
for the factor of 2 in determininĝε). By taking the sum of Eq. (4) over all states we obtain that

IEL,M[T] ≥ c1
|A|−1

ε̂2 |S| log(
c2

δ
).

The result follows by an appropriate choice of constants.

5. Experiments

In this section we show four types of MDPs in which the number of samples used by AE procedures
is significantly smaller than the number of samples used by standard Q-learningandε-greedy Q-
learning. Both model free AE algorithm and standard Q-learning choose the action in each state
uniformly at random. In our experiments we focused on the steady state norm (L1 weighted by
steady state probabilities) rather than theL∞ norm to emphasize the average behavior. We note that
we use the steady state rather than the discounted steady state. We run AE Q-learning algorithm
from Section 4.2 with the same input (for actions that were not eliminated) as a standard Q-learning
algorithm. The following experiments were conducted:

1099

EVEN-DAR, MANNOR AND MANSOUR

1. A queueing system.The MDP represents a queueing problem that appears in Differentiated
Services (Aiello et al., 2000, Kesselman et al., 2004). The basic settings are that the arriving
packets have different values and they are buffered in a FIFO queuebefore being sent. The
major constraints are that we reject or accept a packet upon its arrival(no preemption) and
that the buffer has limited capacity. We have analyzed a queue of size five and three different
packets values, 1,20,150. In each time unit we either receive a packet or send a packet
according to some distribution. We modeled the queueing problem via a discounted MDP
with discount factorγ = 0.99. The AE model-free algorithm2 was compared withε-greedy Q-
learning with epsilon varying from 0.05 to 0.2. In Figure 1 we present the results forε which
was empirically best,ε = 0.1. In this experiment we used a fixed step size. We focused here
on the fraction of times in which optimal actions were performed and on the valuefunction
criterion. The results are demonstrated in Figure 1, in which we see that notonly AE has
better results but the variance in the results is much smaller in both the fraction oftimes that
almost optimal actions were performed and in the value function. Figure 2 demonstrates the
elimination rate of the AE procedure.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

P
er

ce
nt

ag
e

of
 p

la
yi

ng
 9

9%
 o

pt
im

al

The queue problem: AE Vs. ε−greedy

AE Q−learning

ε−greedy Q−learning, ε =0.1

1.5 2 2.5 3 3.5 4

x 10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The queue problem: value function

Iteration

F
ra

ct
io

n
of

 th
e

O
pt

im
al

 V
al

ue

AE Q−learning
Eps greedy, Q−learning eps =.1

Figure 1: Example of a Queue of size 5 with three types of packets with values1,20,150. The
discount factor is set to 0.99. We disregard the full queue state in which every action is
optimal. We repeated each experiment 15 times and the error bars represent 1 standard
deviation.

2. Random MDPs. Two types of random MDPs were randomly generated. In both types there
were 20 states and 50 actions in each state. The first type is due to Puterman (1994) and is
a sparse MDP, such that each action can reach only three states. The second type of random
MDPs is dense, such that the next state distribution is randomly chosen for each state-action
pair and might include all states. For both MDPs the immediate reward expectationis ran-
domly chosen in the interval[0,10]. Results of ten runs are presented by Figure 3 for the

2. Since we were interested in the short term results rather than the long term, we initialized the upper and lower values
to similar values and allowed elimination only after an exploration period, we stillused theβ function for both the
upper and lower estimates as stated in the theoretical part up to constants.

1100

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The queue problem: Elimination Progress

Number of Samples

F
ra

ct
io

n
of

 v
al

id
 a

ct
io

ns

Figure 2: Example of a Queue of size 5 with three types of packets with values1,20,150. The
discount factor is set to 0.99. This figure demonstrates the elimination rate. We repeated
each experiment 15 times and the error bars represent 1 standard deviation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
7

6

7

8

9

10

11

12

Number Of Samples

P
re

ci
si

on

Sparse Random MDP, γ=0.83

AE Q−Learning

Q−Learning

Figure 3: Example of a 20 state sparse randomly generated MDPs with 50 actions in each state,
whereγ = 0.833 (as in Puterman (1994).) The precision is the distance of theQ-function
from the optimalQ-function. We repeated each experiment 10 times and the error bars
represent 1 standard deviation.

sparse MDP, in this experiment the model free AE algorithm needs only about half the sam-
ples used by the Q-learning to achieve the same precision. The precision is measured as the
distance of the Q-function from the optimal function in steady state norm. In Figure 4 for
dense MDP, the results are similar. The AE algorithm required about 40% fewer samples.

1101

EVEN-DAR, MANNOR AND MANSOUR

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
7

28

29

30

31

32

33

34

35

36

37

38

Number Of Samples

P
re

ci
si

on

Dense Random MDP, γ =0.9

AE Q−Learning

Q−Learning

Figure 4: Example of a 20 state dense randomly generated MDPs with 50 actions in each state,
γ = 0.9. The error bars represent 1 standard deviation.

3. Howard’s automobile replacement problem.This MDP represents another realistic problem—
Howard’s automobile replacement problem Howard (1960). This problemcontains 40 states,
in each state there are 41 actions. See Howard (1960) for a detailed description. This problem
was considered as a benchmark by several authors in the optimization community. We used
the model free AE algorithm for this problem with discount factorγ = 0.833 against standard
Q-learning and the results appear in Figure 5. A significant improvement is evident.

0 0.5 1 1.5 2 2.5

x 10
7

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number Of Samples

P
re

ci
si

on

Howard’s Automobile Replacement Problem, γ=0.83

AE Q−Learning

Q−Learning

Figure 5: Example of Howard’s Automobile Replacement Problem, where the discount factor,γ, is
0.833. The norm is the steady state norm. The error bars represent 1 standard deviation.

1102

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

6. Future Directions

Extending the concept of action elimination to large state spaces is probably themost important
direction. The extension to function approximation, which approximates the value function, requires
some assumptions on the value (or Q) function approximation architecture. Following Kakade and
Langford (2002) we can consider value functions that can be approximated under the infinity norm.
For an example of such an algorithm see (Ormoneit and Sen (2002)). If convergence rate of the
function approximation is provided, as in (Ormoneit and Sen (2002)), thenan AE procedure can be
derived as before.

Acknowledgements

E.E. and Y.M. was supported in part by the IST Programme of the EuropeanCommunity, under
the PASCAL Network of Excellence, IST-2002-506778, by a grants no. 525/00 and 1079/04 from
the Israel Science Foundation and an IBM faculty award. The work wasdone while E.E was a
graduate student at Tel Aviv University. S.M. was partially supported by the Natural Sciences and
Engineering Research Council of Canada and by the Canada Research Chairs Program. We thank
Alex Strehl and Csaba Szepesvari for helpful discussions. This publication only reflects the authors’
views.

Appendix A. Proof of Proposition 17

In order to show the almost sure convergence of the upper and lower estimations, we follow the proof
of Bertsekas and Tsitsiklis (1996). We consider a general type ofiterative stochastic algorithms,
which is performed as follows:

Xt+1(i) = (1−αt(i))Xt(i)+αt(i)((HXt)(i)+wt(i)+ut(i)),

wherewt is a bounded random variable with zero expectation and eachH is a pseudo contraction
mapping (See Bertsekas and Tsitsiklis, 1996, for details).

Definition 25 An iterative stochastic algorithm is well behaved if:

1. The step sizeαt(i) satisfies (1)∑∞
t=0 αt(i) = ∞, (2) ∑∞

t=0 α2
t (i) < ∞ and (3)αt(i) ∈ (0,1).

2. There exists a constant A that bounds wt(i) for any history Ft , i.e.,∀t, i : |wt(i)| ≤ A.

3. There existsγ ∈ [0,1) and a vector X∗ such that for any X we have||HX−X∗|| ≤ γ||X−X∗||,
where|| · || is any norm.

4. There exists a nonnegative random sequenceθt , that converges to zero with probability 1, and
is such that

∀i, t |ut(i)| ≤ θt(||Xt ||+1)

We first note that the Q-learning algorithm satisfies the first three criteria and the fourth criteria
holds trivially sinceut = 0, thus its convergence follows if all state-action pairs are tried infinitely
often (see Proposition 5.6 in Bertsekas and Tsitsiklis, 1996). The upper estimate has an additional
noise term,ut . If we show that it satisfies the fourth requirement, then the convergencewill follow.

1103

EVEN-DAR, MANNOR AND MANSOUR

Lemma 26 The upper estimation algorithm is well behaved.

Proof In the convergence proof of Q-learning, it was shown that requirements 1–3 are satisfied,

this implies that the upper estimates satisfies them as well. Now we letut = θt = c
√

ln(#(s,a,t))
#(s,a,t) Vmax.

It follows thatθt converges to zero, thus

|ut(i)| = θt ≤ θt(||Xt ||+1).

Similar result holds for the lower estimate as well.

References

W. A. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen. Competitive queue policies for differen-
tiated services. InINFOCOM, 2000. (To appear in J. of Algorithms).

D. Angluin and L. G. Valiant. Fast probabilistic algorithms for Hamiltonian circuitsand matchings.
Journal of Computer and System Sciences, 18:155–193, 1979.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in arigged casino: The adver-
sarial multi-armed bandit problem. InProc. 36th Annual Symposium on Foundations of Computer
Science, pages 322–331. IEEE Computer Society Press, 1995.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The non-stochastic multi-armed bandit
problem.SIAM J. on Computing, 32(1):48–77, 2002.

D. A. Berry and B. Fristedt.Bandit Problems. Chapman and Hall, 1985.

D. P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific, 1995.

D. P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific, Belmont,
MA, 1996.

V. S. Borkar and S.P Meyn. The O.D.E. method for convergence of stochastic approximation and
reinforcement learning.SIAM J. Control Optim., 38(2):447–469, 2000.

E. Even-Dar and Y. Mansour. Learning rates for Q-learning.Journal of Machine Learning Re-
search, 5:1–25, 2003. (A preliminary version appeared in the Fourteenth Annual Conference on
Computation Learning Theory (2001), 589-604.).

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

R. Howard.Dynamic programming and Markov decision processes. MIT press, 1960.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. InPro-
ceedings of the Nineteenth International Conference on Machine Learning, pages 267–274. Mor-
gan Kaufmann, 2002.

1104

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine Learn-
ing, 49(2-3):209–232, 2002. (A preliminary version appeared in ICML (1998), 260-268.).

M. Kearns and S. P. Singh. Finite-sample convergence rates for Q-learning and indirect algorithms.
In Neural Information Processing Systems 10, pages 996–1002, 1998.

A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, andM. Sviridenko. Buffer over-
flow management in QoS switches.SIAM J. on Computing, 33(3):563–583, 2004. (A preliminary
version appeared in ACM Symposium on Theory of Computing (2001), 520-529.).

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied
Mathematics, 6:4–22, 1985.

J. MacQueen. A modified dynamic programming method for Markov decision problems.J. Math.
Anal. Appl., 14:38–43, 1966.

S. Mannor and J. N. Tsitsiklis. The sample complexity of exploration in the multi-armed bandit
problem. Journal of Machine Learning Research, 5:623–648, 2004. (A preliminary version
appeared in the Sixteenth Annual Conference on Computation Learning Theory (2003), 418-
432.).

D. Ormoneit and S. Sen. Kernel-based reinforcement learning.Machine Learning, 49(2-3):161–
178, 2002.

M. Puterman.Markov Decision Processes. Wiley-Interscience, 1994.

H. Robbins. Some aspects of sequential design of experiments.Bull. Amer. Math. Soc., 55:527–535,
1952.

S. P. Singh and R. C. Yee. An upper bound on the loss from approximate optimal-value functions.
Machine Learning, 16(3):227–233, 1994.

R. Sutton and A. Barto.Reinforcement Learning. 1998.

Cs. Szepesvri and R. Munos. Finite time bounds for sampling based fitted value iteration. In
Proceedings of the 22nd International Conference on Machine Learning (ICML), page 881886,
2005.

C. Watkins.Learning from Delayed Rewards. PhD thesis, Cambridge University, 1989.

1105

